Page 26 - MATINF Nr. 3
P. 26

26                                                                                  L.M. Giugiuc



                                                 2
                                                               2
                                  2
                                       2
                                                       2 2
            hence the inequality a + a + · · · + a + ka a . . . a ≥ n + k is not fullfiled. In conclusion k ≥ 0.
                                  1
                                                               n
                                       2
                                                       1 2
                                                 n
                                                      î √ ä
            Lemma 1 (Crux problem 4121). Let t ∈ 1, 2 be a fixed real number. We consider the positive
                                                                 Ä  2  ä
            real number a, b, c and d satisfying a + b + c + d = 2  t +1  and ab + bc + cd + da + ac + bd = 6.
                                                                    t
                                        2
                                 2
            Then min (abcd) = t (2 − t ).
                                                                            ä
                                                                   î »
            Lemma 2 (generalization of Lemma 1). Let t ∈ 1,               n    be a fixed real number. We
                                                                         n−2
                                                                                                 Ä  2  ä
            consider the positive real numbers a 1 , a 2 , . . . , a n satisfying a 1 + a 2 + · · · + a n = n  t +1  and
                                                                                                    2t
                           n (n − 1)                             n−2        2
              X                                                 t   [n−(n−2)t ]
                    a i a j =        . Then min (a 1 a 2 . . . a n ) =        .
                               2                                      2
            1≤i<j≤n
            Proof of the main result
            Assume first that a 1 + a 2 + · · · + a n ≥ n. Via the third preliminary we get a 1 + a 2 + · · · + a n =
              Ä  2  ä                     î »      ä
            n   t +1  , with t ≥ 1. Set t ∈ 1,   n   . According to the second preliminary, all a 1 , a 2 , . . . , a n
                 2t                             n−2
            are strictly positive. Hence via the Lemma 2, get
                                                                                            2 2
                                                       2
                                     t n−2  [n − (n − 2) t ]              t 2n−4 [n − (n − 2) t ]
                                                                     2
                                                             2 2
                       a 1 a 2 . . . a n ≥               ⇒ a a . . . a ≥                        ⇒
                                              2              1 2     n              4
                                                                                                     2 2
                                                         2
                                                      Å  t + 1  ã 2                t 2n−4 [n − (n − 2) t ]
                      2
                                        2 2
                 2
                                                2
                                 2
                a + a + · · · + a + ka a . . . a ≥ n 2           − n (n − 1) + k ·                      ,
                                                n
                                        1 2
                                 n
                 1
                      2
                                                          2t                                 4
            with equality for a 1 = a 2 = · · · = a n−1 = t. So
                                        ã 2
                                  t + 1                      t    [n − (n − 2) t ]
                                Å  2                          2n−4             2 2
                              n 2          − n (n − 1) + k ·                       ≥ n + k,
                                    2t                                 4
                      Å  2    ã 2    Ç       2n−4             2 2  å
                        t − 1               t    [n − (n − 2) t ]
            that is n 2          ≥ k   1 −                         .
                          2t                          4
                                              î      ä
                             2
                So if we set t = x, then x ∈ 1,   n    and the latter writes as
                                                 n−2
                            2
                           n (x − 1) 2     î     2 n−2                n−1          2 n  ó
                                      ≥ k 4 − n x      + 2n (n − 2) x    − (n − 2) x    .  (∗)
                                x
            Note that via the AM-GM inequality,
                                                                                ï        ã
                                                                                     n
                                                                 2 n
                               2 n−2
                             n x     − 2n (n − 2) x n−1  + (n − 2) x ≤ 4, ∀x ∈ 1,          .
                                                                                   n − 2
                                                          2 n
                        2 n−2
            Moreover, n x     − 2n (n − 2) x n−1  + (n − 2) x = 4 if and only if x = 1. Shall prove next that
                             n      î                                           ó         ï    n   ò
                       2
                                                                             2 n
                                           2 n−2
               2
             n (x − 1) ≤         · x 4 − n x     + 2n (n − 2) x n−1  − (n − 2) x    ∀x ∈ 1,          . (∗∗)
                           n − 2                                                             n − 2
                                                       ¶      ©
            Further, equality holds if and only if x ∈ 1,   n   . Inequality (∗∗) translates into
                                                           n−2
                                                                                           n
                                                                                      ï        ò
                                                 n      n−1
                        [(n − 2) x − n] (n − 2) x − nx     + nx − (n − 2) ≤ 0∀x ∈ 1,             .
                                                                                         n − 2
   21   22   23   24   25   26   27   28   29   30   31