Page 30 - MATINF Nr. 3
P. 30

30                                                                                   F. St˘anescu



                    a+b                   a+b                                                       
                        ñ Å          ã 2  ô 0 Z  2                 Z b  ñ Å         ã 2  ô 0 Z x
                  1         a + b                   2           1              a + b               2
                     2 Z
                                                                                               0
                                                0
             = −                − x         (f (t)) d t d x +          x −               (f (t)) d t d x
                                                        
                                                                                                       
                  2          2                                 2               2
                    a                      x                      a+b                    a+b
                                                                   2                     2
                                           a+b                 a+b
                                            2 Z                 2 Z Å        ã 2
                                1        2           2      1       a + b              2
                                                                                  0
                                                0
                             =    (b − a)     (f (x)) d x −              − x    (f (x)) d x
                                8                           2         2
                                           a                   a
                                           b                   b
                               1          Z         2       1  Z Å a + b    ã 2        2
                                                                                  0
                                               0
                             + (b − a)  2    (f (x)) d x −               − x   (f (x)) d x.
                               8                            2        2
                                         a+b                 a+b
                                          2                   2
            Rezult˘a
                                  b                 b                  b
                                 Z                 Z                  Z Å           ã 2
                       1        2     0    2                2       1         a + b      0    2
                         (b − a)    (f (x)) d x ≥    (f (x)) d x +        x −          (f (x)) d x
                       8                                            2           2
                                 a                 a                  a
                                                                                         é 2
                                     b                           b
                                                              Ñ
                                   Z                    1       Z Å      a + b  ã
                                             2
                                                                                  0
                               ≥      (f (x)) d x +                 x −         f (x) d x
                             C−B−S                  2 (b − a)              2
                                    a                           a
                                                                                             é 2
                                                     Ñ
                            b                                                      b
                           Z                    1       b − a        b − a        Z
                                    2
                        =     (f (x)) d x +                  f (b) +      f (a) −    f (x) d x
                                            2 (b − a)     2            2
                           a                                                      a
                                            b
                                          Z
                                                    2      b − a               2
                                        =    (f (x)) d x +       (f (b) + f (a)) ,
                                                             8
                                          a
            de unde
                             b                                                  b
                            Z                   1                        8     Z
                                      2
                                 0
                                                                  2
                                                                                        2
                               (f (x)) d x −       (f (a) + f (b)) ≥             (f (x)) d x.
                                              b − a                   (b − a) 2
                            a                                                  a
            Aplicat , ia 5. Fie f : [0, 1] → R o funct , ie continu˘a. Demonstrat , i c˘a:
                               1              Ñ   1         é 2      1            1
                            1  Z                Z                   Z            Z
                                  2
                                f (x) d x + 2      f (x) d x    ≥ 3   f (x) d x ·  xf (x) d x.
                            4
                              0                  0                  0            0
            Solut ,ie. Fie a ∈ R astfel ˆıncˆat
                                                              2
                                                            é
                        1                         1                  1            1
                                              Ñ
                       Z                         Z                  Z            Z
                     1     2
                         f (x) d x + (2 + 3a)       f (x) d x   ≥ 3    f (x) d x ·  (x + a) f (x) d x.
                     4
                       0                         0                  0            0
                      1                                      1                      1
                                                                                       2
                                                      2
                      R                                      R                    1  R
                Dac˘a   f (x) d x = t, atunci (2 + 3a) t − 3t (x + a) f (x) d x +    f (x) d x ≥ 0 ⇒
                                                                                  4
                      0                                      0                     0
                                                                2
                                        Ñ                    é
                                            1                                 1
                                          Z                                 Z
                                                                                2
                                 ∆ t = 9     (x + a) f (x) d x   − (2 + 3a)    f (x) d x
                                           0                                 0
   25   26   27   28   29   30   31   32   33   34   35