Page 31 - MATINF Nr. 3
P. 31

Inegalit˘at , i integrale                                                                      31



                            1               1                       1                        1
                           Z               Z                      Z                        Z
                                     2
                                                                                                2
                                               2
                                                                       2
                   ≤    9 ·  (x + a) d x ·    f (x) d x − (2 + 3a)   f (x) d x = (1 + 3a) 2   f (x) d x.
                 C−B−S
                           0               0                       0                        0
                                                                           1                    R 1
                                                                          R
                                     1
                                                                     2
                                                                                                   2
                Astfel, pentru a = − obt , inem ∆ t ≤ 0, deci (2 + 3a) t −3t (x + a) f (x) d x+ 1  f (x) d x ≥
                                     3                                                        4
                                                                          0                     0
                                               Ç           å 2
                                1                 1                 1           1
                                   2
                                                                   R
            0, (∀) t ∈ R ⇒    1  R  f (x) d x + 2  R  f (x) d x  ≥ 3 f (x) d x ·  R  xf (x) d x.
                        a=− 1 4  0               0                 0           0
                            3
                                                                                               1
                                                                                              R
            Aplicat , ia 6. Consider˘am f, g : [0, 1] → R dou˘a funct , ii integrabile, astfel ˆıncˆat  g (x) d x = 0
                                                                                              0
               1
                  2
               R
            s , i  g (x) d x 6= 0. Ar˘atat , i c˘a are loc inegalitatea:
               0
                                                                   Ç                  å 2
                                                                      1
                                               Ñ            é  2     R
                                 1                1                    f (x) · g (x) d x
                                Z                Z
                                    2
                                  f (x) d x −       f (x) d x   ≥    0                   .
                                                                         1
                                                                        R  2
                                0                0                        g (x) d x
                                                                        0
            Solut ,ie. Folosind condit , ia din enunt , si inegalitatea C-B-S, putem scrie:
                              1                    1
                             Z                    Z
                          λ ·   f (x) · g (x) d x =  g (x) · (1 + λf (x)) d x, (∀) λ ∈ R, de unde
                             0                    0
                                      2                                 2
                   1                          1                              1             1
            Ñ                       é     Ñ                          é
                  Z                         Z                               Z            Z
                                                                                                        2
                                                                                2
               λ ·   f (x) · g (x) d x  =      g (x) · (1 + λf (x)) d x  ≤     g (x) d x ·  (1 + λf (x)) d x
                  0                          0                              0             0
                                Ç                  å 2
                                   1
                                  R
                                    f (x) · g (x) d x              1                 1
                                                                  Z                 Z
                                                                                 2
                             2
                                                                                        2
                         ⇒ λ ·    0                    ≤ 1 + 2λ ·    f (x) d x + λ ·   f (x) d x
                                      1
                                      R
                                         2
                                        g (x) d x                 0                 0
                                      0
                      à                                     å í
                                         Ç                    2
                                            1
                                           R
                           1                 f (x) · g (x) d x             1
                          Z                                               Z
                              2
                ⇒ λ  2       f (x) d x −   0                       + 2λ ·    f (x) d x + 1 ≥ 0, (∀) λ ∈ R.
                                               1
                                              R   2
                          0                     g (x) d x                 0
                                               0
                                 Ç           å 2
                   1              1 R  f(x)·g(x) d x
                  R
                     2
            Cum     f (x) d x −   0             ≥ 0, atunci trinomul de gradul al doilea
                                      2
                  0                 1 R  g (x) d x
                                    0
                                                                        2
                                 à
                                                    Ç                 å í
                                                      1
                                                      R
                                      1                 f (x) · g (x) d x             1
                                    Z                                               Z
                                         2
                     F (λ) = λ 2       f (x) d x −    0                       + 2λ ·   f (x) d x + 1
                                                          1
                                                         R
                                                            2
                                     0                     g (x) d x                 0
                                                         0
   26   27   28   29   30   31   32   33   34   35   36