Page 25 - MATINF Nr. 3
P. 25

An unusual configuration




            Leonard Mihai Giugiuc         1



                Our goal in this paper is to find the admissible domain of k such that the inequality
                                              2
                                         2
                                                               2 2
                                                                       2
                                                         2
                                        a + a + · · · + a + ka a . . . a ≥ n + k
                                         1    2          n     1 2     n
                                                                      X            n (n − 1)
            does hold for any real numbers a 1 , a 2 , . . . , a n satisfying  a i a j =     , where n ≥ 4 is
                                                                                       2
                                                                    1≤i<j≤n
            a fixed integer.
            Preliminaries

                                                                                    X              2
                1. a 1 + a 2 + · · · + a n ≥ n or a 1 + a 2 + · · · + a n ≤ −n. Indeed, as  (a i − a j ) ≥ 0, the
                                                                                  1≤i<j≤n
            conclusion follows immediately.
                                                                                n (n − 1)
                                                                  X
                2. If a 1 , a 2 , . . . , a n are real numbers satisfying  a i a j =      and n ≤ a 1 + a 2 +
                                                                                    2
                                                                1≤i<j≤n
                               »
            · · · + a n < (n − 1)  n  , then all of them are strictly positive.
                                  n−2
                                                                               2
                                                                           2
                Indeed, set a 1 +a 2 +· · ·+a n = ns, with 1 ≤ s < √ n−1  so a +a +· · ·+a = n (ns − n + 1) ,
                                                                                        2
                                                                                                 2
                                                                 n(n−2)    1   2        n
                                                              2
                                                                   2
                                                                                                        2
                                                                                          2
            from which a 1 + a 2 + · · · + a n−1 = ns − a n and a + a + · · · + a 2 n−1  = n (ns − n + 1) − a .
                                                                                                        n
                                                              1
                                                                   2
                                                                                     2
                                                                                2
                By Jensen’s inequality, (a 1 + a 2 + · · · + a n−1 ) 2  ≤ (n − 1) a + a + · · · + a 2    .  Thus,
                                                                                1    2          n−1
                                                                                                      2
                      2
                                                       2
                                                                   2
                                         2
                                                                                          2
            (ns − a n ) ≤ (n − 1) [n (ns − n + 1) − a ], hence a − 2sa n − n (n − 2) s + (n − 1) ≤ 0,
                                                              √
                              √
                                                                   n
                                                       n
            then s − (n − 1) s − 1 ≤ a n ≤ s + (n − 1) s − 1 and as 1 ≤ s < √                n−1  , we have
                                                                 2
                                 2
                        √                                                                    n(n−2)
                           2
            s − (n − 1) s − 1 > 0, from which a n > 0. Analogously a 1 , a 2 , . . . , a n−1 > 0.
                                                               X            n (n − 1)
                3. If a 1 , a 2 , . . . , a n are real numbers satisfying  a i a j =  and a 1 +a 2 +· · ·+a n ≥
                                                                                2
                                                             1≤i<j≤n
                                                                        Ä  2  ä
            n, then there exists t ≥ 1 such that a 1 + a 2 + · · · + a n = n  t +1  .
                                                                           2t
                4. We’ll prove that k ≥ 0. Indeed, let k < 0. For every t ≥ 1, set a 1 = a 2 = · · · = a n−1 = t
                                                                                                      2
                                                                                                           ã
                                                                                                   Å
            and a n =   n−(n−2)t 2 . Hence, we get  X  a i a j =  n (n − 1) , a 1 + a 2 + · · · + a n = n  t + 1
                           2t                                     2                                    2t
                                                   i<j
                                           2
                                t n−2 [n−(n−2)t ]                                   Ä  2  ä 2
                                                                             2
                                                                 2
                                                            2
            and a 1 a 2 . . . a n =          . We have: a + a + · · · + a = n      2  t +1  − n (n − 1) and
                                      2                     1    2           n         2t
                                        2
                                      2
                          t 2n−4 [n−(n−2)t ]
              2 2
                     2
            a a . . . a =        4       . But
                     n
              1 2
                               Ç           ã 2                                       å
                                     t + 1                      t    [n − (n − 2) t ]
                                   Å  2                         2n−4              2 2
                           lim   n 2          − n (n − 1) + k ·                        = −∞,
                          t→∞          2t                                4
               1
                Profesor, Colegiul Nat , ional ,,Traian”, Drobeta Turnu Severin, leonardgiugiuc@yahoo.com
                                                           25
   20   21   22   23   24   25   26   27   28   29   30