Page 29 - MATINF Nr. 3
P. 29

Inegalit˘at , i integrale                                                                      29



                                                                                   0
            Aplicat , ia 2. Fie f : [0, 1] → R o funct , ie derivabil˘a cu f (1) = 0 s , i f continu˘a. Ar˘atat , i c˘a:

                                           1                  Ñ   1        é  2
                                         Z                      Z
                                                   2
                                              0
                                            (f (x)) d x ≥ 3 ·      f (x) d x   .
                                         0                      0
            Solut ,ie. Utilizˆand formula de integrare prin p˘art , i, avem:
                1             1                      1                 1
                R            R   0                   R   0            R    0
                  f (x) d x =  x ·f (x) d x = f (1)− xf (x) d x = −     xf (x) d x, de unde, prin intermediul
                0            0                       0                0
            inegalit˘at , ii C-B-S, avem:

                Ñ             é 2   Ñ               é 2
                    1                   1                   1         1                    1
                   Z                   Z                  Z          Z                 1  Z
                                                                               2
                                                                                                    2
                                                                          0
                                                               2
                                            0
                                                                                               0
                     f (x) d x    =       xf (x) d x    ≤    x d x ·   (f (x)) d x =    ·   (f (x)) d x.
                                                                                       3
                   0                   0                   0         0                    0
            Aplicat , ia 3. Fie f : [0, 1] → R o funct , ie continu˘a. Ar˘atat , i c˘a :
                                                            Ñ              é  2
                                           1                    1
                                          Z               7    Z
                                            f  2  x 2    d x ≥   xf (x) d x    .
                                                          4
                                          0                    0
                                                                   1                   1
                                                                  R
                                                                           2
                                                                      3
                                                   2
                                                                                     ·
            Solut ,ie. Cu schimbarea de varibil˘a x = t, obt , inem  x f (x ) d x =  1 R  xf (x) d x, de unde
                                                                  0                2   0
                         Ñ                 é 2
                                1                  1         1                   1
                           1   Z                  Z         Z                1  Z
                                                      6
                             ·   xf (x) d x    ≤    x d x ·    f 2  x 2  d x =  ·  f 2  x 2  d x ⇒
                           2                                                 7
                               0                  0         0                   0
                                                            Ñ              é  2
                                           1                    1
                                          Z               7    Z
                                            f  2  x 2    d x ≥   xf (x) d x    .
                                                          4
                                          0                    0
            Aplicat , ia 4. Dac˘a f : [a, b] → R este o funct , ie derivabil˘a, cu derivata continu˘a, astfel ˆıncˆat
             b
            R                a+b
              f (x) d x = f       = 0, demonstrat , i inegalitatea:
                              2
            a
                             b                                                  b
                            Z                   1                        8     Z
                                                                  2
                                                                                        2
                                 0
                                      2
                               (f (x)) d x −       (f (a) + f (b)) ≥             (f (x)) d x.
                                              b − a                   (b − a) 2
                            a                                                  a
            Solut ,ie. Folosind f  a+b     = 0, inegalitatea C-B-S s , i formula integr˘arii prin p˘art , i, putem scrie:
                                   2
                                              !2          Ñ             é 2
                             a+b     a+b
             b                                          b     x
            R        2        2 R  2 R  0              R     R   0
              (f (x)) d x =           f (t) d t  d x +          f (t) d t   d x
            a                 a    x                   a+b   a+b
                                                        2    2
                       a+b               a+b                                                 
                                           2                    Z b  Å          ã Z x
                           a + b                  2                      a + b             2
                        2 Z
                                       ã Z
                            Å
                                                                                       0
                                               0
                    ≤              − x       (f (t)) d t d x +     x −             (f (t)) d t d x
                                                                   
                                                       
                                                                                                
                                2                                           2
                          
                       a                  x                    a+b               a+b
                                                                2                 2
   24   25   26   27   28   29   30   31   32   33   34