Page 27 - MATINF Nr. 3
P. 27

An unusual configuration                                                                        27



                  d                                                   2
                              n
            But      [(n − 2) x − nx n−1  + nx − (n − 2)] = n (x − 1) [(n − 2) x n−3  + · · · + 2x + 1] ≥ 0 on
            î     dx ó                                                  Ä      ä
                                  n
             1,  n  , so (n − 2) x − nx  n−1  + nx − (n − 2) > 0, ∀x ∈ 1,   n   . Clearly, (n − 2) x − n < 0,
                n−2                                                        n−2
                       Ä       ä                                                  î      ó
            for all x ∈ 1,  n   , hence (∗∗) is proved. Consider the function f : 1,   n   → R,
                           n−2                                                        n−2
                                           n  , if x = 1
                                       (
                                          n−2
                              f (x) =                n (x−1) 2          , if 1 < x ≤  n  .
                                                      2
                                                                     2 n
                                              2 n−2
                                          x[4−n x  +2n(n−2)x n−1 −(n−2) x ]          n−2
                                                           Ä    ä
            Clearly, f is continuous, positive, f (1) = f     n   =   n   and via (∗∗), f (x) <   n  , for all
                                                             n−2     n−2                         n−2
                 Ä      ä                               Ä      ä                                    Ä      ä
            x ∈ 1,   n   . So by Weierstrass-Bolzano ∃ 0,    n   3 m =    min    f (x) at some x 0 ∈ 1,  n   .
                    n−2                                    n−2                                          n−2
                                                                        x∈[1,  n  ]
                                                                             n−2
                                î      ä
            As f (x) ≥ m ∀x ∈ 1,     n  , we get that
                                    n−2
                      2
                     n (x − 1) 2     î      2 n−2               n−1           2 n  ó     ï    n   ã
                                ≥ m 4 − n x       + 2n (n − 2) x    − (n − 2) x    ∀x ∈ 1,          .
                         x                                                                  n − 2
                                                     ä
                                                                                 »   n
                                            î »
                                                   n
            Consequently, using (∗), if t ∈ 1,        , then k max = m. Let t ≥        . Then
                                                  n−2                               n−2
                                                                                       ã 2
                                                                                 t + 1
                                                                               Å  2
                                           2 2
                                                        2
                                    2
                                                   2
                                                                        2
                         2
                    2
                                                             2
                   a + a + · · · + a + ma a . . . a ≥ a + a + · · · + a = n   2           − n (n − 1) .
                    1    2          n      1 2     n    1    2          n
                                                                                   2t
                    Ä  2  ä 2                           »
            But n  2  t +1  − n (n − 1) ≥  n(n−1) , ∀t ≥    n  . It remaining to show   n(n−1)  ≥ n + m ⇐⇒
                      2t                    n−2            n−2                           n−2
              n  ≥ m, which is true. We’ll prove that a + a + · · · + a + ma a . . . a ≥ n + m for
                                                                                     2 2
                                                                                             2
                                                            2
                                                                  2
                                                                             2
             n−2                                            1     2          n       1 2     n
            a 1 + a 2 + · · · + a n ≤ −n. But via the substitutions a i → −a i , i = 1, 2, . . . , n this case reduces
            to the studied one. For completing, we’ll prove that the admissible domain of k is the interval
            [0, m]. Indeed, let k ∈ [0, m]. We have:
                                                                             h
                               2   2          2     2 2     2                  2    2          2
                         m a + a + · · · + a + ka a . . . a − (n + k) − k a + a + · · · + a
                              1    2          n     1 2     n                  1    2          n
                                                      i
                                                                          2
                                  2 2
                                                                     2
                                                                                     2
                                         2
                            +ma a . . . a − (n + m) = (m − k) a + a + · · · + a − n .
                                                                          2
                                                                     1
                                  1 2
                                         n
                                                                                     n
                                 2
                                                 2
                                      2
            As m − k ≥ 0 and a + a + · · · + a − n ≥ 0, then
                                 1    2          n
                   2         2      2 2     2                   2         2      2 2     2
              m a + · · · + a + ka a . . . a − (n + k) − k a + · · · + a + ma a . . . a − (n + m) ≥ 0.
                                                               1
                                                                                         n
                             n
                                    1 2
                   1
                                            n
                                                                          n
                                                                                 1 2
                             2
                                  2
                                                            2
                                             2
                                                    2 2
            But k ≥ 0 and a + a + · · · + a + ma a . . . a − (n + m) ≥ 0 ⇒
                             1    2          n      1 2     n
                                        2   2          2      2 2     2
                                   m a + a + · · · + a + ka a . . . a − (n + k) ≥ 0
                                            2
                                       1
                                                       n
                                                              1 2
                                                                      n
            and since m > 0, then
                                         2
                                              2
                                                         2
                                                                       2
                                                               2 2
                                        a + a + · · · + a + ka a . . . a ≥ n + k.
                                         1
                                                                       n
                                              2
                                                               1 2
                                                         n
            This completes the proof of the claim.
                                                                   √
                At the end, we’ll specify that if n = 4 then m = 7 7 − 17. Note that the problem in case
            n = 4 was opened by the author in 2016, but no one closed it till date.
            Bibliography
            https://cms.math.ca/crux/v43/n3/Solutions_43_3.pdf
   22   23   24   25   26   27   28   29   30   31   32