Page 83 - MATINF Nr.2
P. 83

˘
            PROBLEME DE MATEMATICA PENTRU EXAMENE                                                          83

                                                                           x
              10. S˘a se determine derivata funct , iei f : R → R, f(x) =      .
                                                                          2
                                                                        x + 1
                                                                           2
                                                       2
                               1 − x 2               x − 1                x − 1
                                             0
                                                                   0
                      0
                  a) f (x) =           ; b) f (x) =          ; c) f (x) =       ;
                                2
                                                      2
                                                                           2
                              (x + 1) 2             (x + 1) 2             x + 1
                              1 − x 2               −x
                                          0
                       0
                  d) f (x) =        ; e) f (x) =          .
                                                   2
                               2
                              x + 1              (x + 1) 2
              11. S˘a se determine elementul neutru al legii de compozit , ie x ◦ y = xy − 2x − 2y + 6,
                  x, y ∈ (2, ∞).
                  a) e = 2; b) e = 3; c) e = 4; d) e = 0; e) e = 6.
                                                                       8 + 6i
                                                                     Ç       å 2019
              12. S˘a se determine modulul num˘arului complex z =                 .
                                                                       3 − 4i
                      √
                  a) ( 2) 2019 ; b) 1; c) 2 2019 ; d) 0; e) 5 2019 .
              13. S˘a se determine punctul de intersect , ie al graficelor funct , iilor f, g : R → R, f(x) =
                    2
                  x − 2x + 3, g(x) = 2x − 1.
                  a) (2, 3); b) (2, 1); c) (3, 2); d) (2, 2); e) (2, −3).
              14. S˘a se determine termenul a 10 al progresiei aritmetice (a n ) n≥1 pentru care a 2 = 3, a 4 = 15.
                  a) 57; b) 50; c) 51; d) 54; e) 17.
              15. S˘a se determine valoarea parametrului real a pentru care funct , ia
                                                             
                                                              x + (2 − a), x ≤ 0,
                                                             
                                         f : R → R, f(x) =         sin x
                                                                        ,     x > 0,
                                                             
                                                             
                                                                     x
                  este continu˘a.
                  a) 0; b) 1; c) −1; d) 2; e) 1/2.






                                                        Testul 2

                                                                                                    D.M.I.  2




                                               ?
             1. Valoarea parametrului m ∈ R , pentru care funct¸ia f : R → R definit˘a prin
                                                    (
                                                       2x + m dac˘a x ≤ 2
                                            f(x) =
                                                       mx + 2 dac˘a x > 2
            este bijectiv˘a, este

                a) m = −2; b) m = 3; c) m = 2; d) m = 0; e) m = −1.



             2. Mult¸imea solut¸iilor ecuat¸iei |1 − x| = x − 1 este
                a) S = (−1, 1]; b) S = [1, +∞); c) S = (−2, 3]; d) S = (−∞, 1]; e) S = (1, +∞).

               2
                Universitatea din Pites , ti, revista.matinf@upit.ro
   78   79   80   81   82   83   84   85   86   87   88