Page 11 - REVISTA MATINF Nr. 5
P. 11

O inegalitate pentru funct¸ii convexe/concave                                                  11



            Propozit , ia 7. ([7]) Dac˘a a 1 , a 2 , . . . , a n > 0 cu notat ,iile a 1 +a 2 +. . .+a n = S s , i a 1 ·a 2 ·. . .·a n = P,
            avem:

                                                                                  €             Š S
                       a 2
                  a 1
                 a · a · . . . · a a n  · (S−a 1 ) S−a 1  · (S−a 2 ) S−a 2  · . . . · (S−a n ) S−a n  ≥ (n−1) n−1  · P  .  (12)
                  1    2        n
            Demonstrat¸ie. Consider˘am funct , ia f : (0, ∞) → R, f(x) = x ln x, care este funct , ie strict
            convex˘a. Calcul˘am s , i aici:
                          n             ‹     n                            n
                         X                    X                           X
                                  S − a k             S − a k   S − a k                  S − a k
                             a k f          =     a k ·       ln        =     (S − a k ) ln
                                     a k                a k       a k                       a k
                         k=1                  k=1                          k=1
                                         n           ‹            n         ‹
                                       X       S − a k  S−a k     Y    S − a k  S−a k
                                     =     ln                = ln
                                                  a k                    a k
                                        k=1                       k=1
                        n                              n                            n
                           (S − a k ) S−a k     1                               1
                       Y                              Y                            Y
                                                          a k
                                                                                       a k
                  = ln                   = ln  n    ·    a (S − a k ) S−a k  = ln     a (S − a k ) S−a k ,
                                                                                       k
                                                          k
                              a S−a k         Q   S                            P  S
                       k=1      k                a    k=1                          k=1
                                                  k
                                              k=1
                                                                  (n−1)S
            respectiv f (n−1) · S= [(n−1) ln (n−1)] · S=ln (n−1)        .
                Aplicˆand inegalitatea (C) se obt , ine inegalitatea (12).
                Egalitatea are loc dac˘a s , i numai dac˘a a 1 = a 2 = . . . = a n .
            Bibliografie


            [1] J.L.W.V. Jensen, Sur les fonctions convexes et les in´egalit´es entre les valeurs moyennes,
                Acta Mathematica, 30 (1), pp. 175–193, 1906.

            [2] D. M˘arghidanu, Generalizations and refinements for Bergstr¨om and Radon’s Inequalities,
                Journal of Sciences and Arts, Year 8, No. 1 (8), 2008, on-line, http://www.icstm.ro/DOCS/
                josa/josa_2008_1/cuprins.htm
            [3] D. M˘arghidanu, Generaliz˘ari ale inegalit˘at ,ilor lui Young, H¨older, Rogers s , i Minkowski,
                Gazeta Matematic˘a, seria A, Anul XXVI (CV), nr. 3 / 2008.

            [4] D. M˘arghidanu, Proposed problem, Mathematical Inequalities, https://www.facebook.
                com/photo.php?fbid=3378302362228848&set=gm.2648165092138202&type=3&theater&
                ifg=1
            [5] D. M˘arghidanu,      Proposed problem,     Romanian Mathematical Magazine,            https:
                //www.facebook.com/photo.php?fbid=2585007641829030&set=gm.1838155749642029&
                type=3&theater
            [6] D. M˘arghidanu, Proposed problem, Math Facts, https://www.facebook.com/photo.php?
                fbid=3390923744300043&set=gm.739274503502386&type=3&theater&ifg=1
            [7] D. M˘arghidanu, Proposed problem, Groupe Matheux, https://www.facebook.com/photo.
                php?fbid=3400655483326869&set=gm.1593674704140714&type=3&theater&ifg=1
            [8] D.S. Mitrinovi´c, J.E. Pecari´c, A.M. Fink, Classical and New Inequalities in Analysis, Kluwer
                Acad. Press., 1993.

            [9] P.M. Vasic, J.E. Pecaric, On the Jensen Inequality, Univ. Beograd. Publ. Electrotehn. Fak.,
                Ser. Mat. Fiz., No. 634 – 677, pp. 50-54, 1979.
   6   7   8   9   10   11   12   13   14   15   16