Page 33 - MATINF Nr. 3
P. 33

Inegalit˘at , i integrale                                                                      33



            Solut ,ie. Din Teorema de medie, exist˘a c ∈ (a, b) astfel ˆıncˆat f (c) = 0. Putem scrie:

                                          x                                 x
                                         Z                                 Z
                                                                                    2
                                                            2
                                             0
                                                                                0
                                 f (x) =    f (t) d t  ⇒   f (x) ≤ |x − c|    (f (t)) d t
                                                    C−B−S
                                         c                                 c
                         b              b         x                    b               b
                       Z               Z          Z                     Z               Z
                                                            2
                                                                                  2
                                                       0
                                                                             0
                            2
                    ⇒     f (x) d x ≤     |x − c|   (f (t)) d t d x ≤     (f (x)) d x ·   |x − c| d x
                                                                
                        a              a          c                     a               a
                            b                                                      b
                                                              2
                           Z               Å                 a + b 2  ã  (b − a) 2  Z
                                     2
                                                                                            2
                                0
                                                                                       0
                                              2
                        =    (f (x)) d x · c − c (a + b) +            ≤             (f (x)) d x.
                                                                2           2
                           a                                                      a
                                                         1
            Aplicat , ia 10. Fie f : [a, b] → R de clas˘a C astfel ˆıncˆat f (a) = f (b) = 0. Ar˘atat , i c˘a:
                                          b                       b
                                                        (b − a)
                                         Z                     2  Z
                                                                           2
                                                                      0
                                             2
                                            f (x) d x ≤             (f (x)) d x.
                                                            8
                                         a                       a
                                                      x                             x
                                                                                             2
                                                         0
                                                                                        0
            Solut ,ie. Pentru x ≤  b+a , avem f (x) =  R  f (t) d t ⇒ f (x) ≤ (x − a)  R  (f (t)) d t ⇒
                                                                    2
                                   2
                                                     a                              a
                         b+a             b+a             b+a                       b+a
                                                                                 2  2 Z
                          2 Z
                                                          2 Z
                                                                          (b − a)           2
                                          2 Z
                                                                                        0
                                                  2
                                              0
                             2
                            f (x) d x ≤     (f (t)) d t ·  (x − a) d x =              (f (t)) d t.
                                                                             8
                         a               a               a                         a
                      b                     b                       b                     b
                          2
                                                                      2
                      R             (b−a) 2 R        2             R              (b−a) 2 R       2
                                                0
                                                                                             0
            Analog,     f (x) d x ≤           (f (t)) d t, de unde   f (x) d x ≤        ·  (f (t)) d t.
                                       8                                            8
                     b+a                   b+a                     a                     a
                      2                    2
            Bibliografie
            [1] M. Andronache, R. Gologan, D. Schwarz, D. S , erb˘anescu, Olimipiada de matematic˘a 2006-
                2010, Ed. Sigma, Bucures , ti, 2010.
            [2] M.O. Drimbe, Inegalit˘at , i. Idei s , i metode, Ed. Gil, Zal˘au, 2003.
            [3] L.G. L˘adunc˘a, Borne pentru matematicieni, Algebr˘a-Analiz˘a, clasele IX-XII, Ed. Taida, Ias , i,
                2010.
            [4] C. Mortici, Bazele Matematicii. Teorie s , i exercit , ii, Ed. Paralela 45, Pites , ti, 2016.
            [5] N. Mus , uroaia, Gh. Boroaica, Analiz˘a Matemtic˘a pentru concursuri, olimpiade s , i centre de
                excelent , ˘a, Clasa a XII-a, Ed. Paralela 45, Pites , ti, 2014.
            [6] F. St˘anescu, Inegalit˘at , i integrale. De la init , iere la performant , ˘a, Ed. Paralela 45, Pites , ti,
                2015.
            [7] R.T. Rockafeller, Analiz˘a convex˘a, Ed. Theta, Bucures , ti, 2002.
            [8] Colect , ia Gazetei Matematice, Seria B.
   28   29   30   31   32   33   34   35   36   37   38