Page 25 - MATINF Nr. 9-10
P. 25

New inequalities in triangle                                                                   25



                                        2
                                                              2
                                                                       2

                                 1 − cos C ≤ (1 + cos C) cos A + cos B , and hence
                                                   2
                                                sin C
                                                                       2
                                                              2
                                                        ≤ cos A + cos B.
                                              1 + cos C

            Corollary 5. In any non-obtuse triangle ABC hold the following inequalities:
                                  2
                                       2
                                                                      2
                                                                           2
                                                           2
                                 s + r − 4R  2    X     sin A      2R − s + (2R + r)    2
                                               ≤                ≤
                                      2R 2            1 + cos A             R 2
                                                        2
                                                                    2
                                               2
            (a refinement of the inequality 3s ≤ 16R + 8Rr + r ). The first inequality is valid in any
            triangle.
            Theorem 3. In any acute triangle ABC hold the following inequalities:
                                              2
                                                                            2
                                           sin A                         sin A
                                                      ≤ 1 + cos A ≤                .
                                                  2
                                      cos B + cos C                   2 cos B cos C
                                         2
            Proof. The inequalities follow from Theorem 2.
            Corollary 6. In any acute triangle ABC hold the following inequalities:
                                               2
                                                                               2
                                            sin A              r    1       sin A
                                   X                                  X
                                                        ≤ 4 +    ≤                   .
                                                    2
                                          2
                                       cos B + cos C          R     2     cos B cos C
            Theorem 4. In any acute triangle ABC holds the following inequality:
                     Å                                                              ã
                              cos A               cos B                 cos C                   R
                max                       ,                    ,                       ≤ p              .
                              2
                                       2
                                                   2
                                                            2
                                                                                 2
                                                                        2
                       1 + sin B + sin C 1 + cos C + cos A 1 + cos A + cos B             2 3r(2R − r)
                                                       2
                                                      s − r(4R + r)
                                          P    2
            Proof. We have the identity     sin A =                  .
                                                           2R 2
                                                          2
                                            2
                By Gerretsen’s inequality s ≥ 16Rr − 5r we derive that
                                                             3r(2R − r)
                                                X
                                                       2
                                                    sin A ≥              .
                                                                 R 2
            It follows that
                                                                   3r(2R − r)
                                                                                    2
                                          2
                                                            2
                                                   2
                                 2
                              cos A + sin A + sin B + sin C ≥                 + cos A, so
                                                                       R 2
                                           3r(2R − r)              2  »
                           2
                                                            2
                                    2
                    1 + sin B + sin C ≥               + cos A ≥        3r(2R − r) · cos A, and hence
                                               R 2                R
                                                cos A                  R
                                                                               .
                                                2
                                                         2
                                                             ≤ p
                                         1 + sin B + sin C      2 3r(2R − r)

            Corollary 7. In any acute triangle ABC hold the following inequalities:
                                                             2
                                                        2
                                                                    2
                               1                    R (s + v − 4R )
                   P
                1)                                          î               ó;
                                      2
                             2
                      1 + sin B + sin C   ≤ p                 2            2
                                             2 3r(2R − r) s − (2R + r)
                             cos A                 3R
                   P
                2)                        ≤ p               ;
                             2
                                      2
                      1 + sin B + sin C      2 3r(2R − r)
                                2
                            cos A                R + r
                   P
                3)                        ≤ p               .
                             2
                                      2
                      1 + sin B + sin C      2 3r(2R − r)
   20   21   22   23   24   25   26   27   28   29   30