Page 24 - MATINF Nr. 9-10
P. 24

24                                                                                    M. Bencze



                                 sin A                  R             3R         √
                      P                          P
            Proof. 1)                         ≤      √         = √            ≤    3.
                                          2
                                 2
                         1 + cos B + cos C          2 R − r   2   2 R − r   2
                                                         2
                                                                       2
                                2
                             sin A                R                      s
                   P                                     P
                2)                        ≤ √               sin A = √          .
                             2
                                      2
                      1 + cos B + cos C      2 R − r   2            2 R − r   2
                                                  2
                                                                         2
                                    A
                          sin A sin 2
                   P                2             R      P     2  A    2R − r
                3)                        ≤ √               sin    = √           .
                                      2
                             2
                      1 + cos B + cos C      2 R − r   2        2    4 R − r   2
                                                  2
                                                                          2
                                    A
                          sin A cos 2
                   P                2             R      P     2  A     4R + r
                4)                        ≤ √               cos    = √           .
                      1 + cos B + cos C      2 R − r   2         2    4 R − r   2
                             2
                                      2
                                                                           2
                                                  2
                All the next corollaries can be proved in a similar manner as Corollary 1.
            Corollary 2. In any acute triangle ABC hold the following inequalities:
                                             …
                             sin 2A             R + r
                   P
                1)                        ≤           ;
                             2
                                      2
                      1 + cos B + cos C         R − r
                                                                  2
                                                            2
                                                       2
                              tg A                R (s + r − 4R )
                   P
                2)                        ≤ √            î              ó.
                             2
                                      2
                      1 + cos B + cos C      2 R − r   2  s − (2R + r) 2
                                                  2
                                                           2
            Corollary 3. In any triangle ABC hold the following inequalities:
                                                 2
                           r b r c sin A        s R
                   P
                1)                        ≤ √          ;
                                     3
                                                 2
                      1 + cos B + cos C     2 R − r   2
                                                  2
                           h b h c sin A         s r
                   P
                2)                        ≤ √          .
                                      2
                             2
                      1 + cos B + cos C        R − r  2
                                                 2
            Corollary 4. In any triangle ABC hold the following inequalities:
                               2                 2
                              a r a          2sR (2R − r)
                   P
                1)                        ≤    √           ;
                                      2
                             2
                      1 + cos B + cos C          R − r  2
                                                   2
                                                    2
                                 a 2             2R (4R + r)
                   P
                2)                            ≤    √          .
                                       2
                              2
                                                       2
                      (1 + cos B + cos C)r a      s R − r   2
            Theorem 2. In any non-obtuse triangle ABC hold the following inequalities
                                                              2
                                                           sin C
                                         2
                                                   2
                                      cos A + cos B ≥               ≥ 2 cos A cos B
                                                         1 + cos C
            (and their permutations). The second inequality is valid in any triangle.
            Proof. We have
                                                           2
                                                                    2
                                                                                             2
                                                  2
                     1 − 2 cos A cos B cos C = cos A + cos B + cos C ≥ 2 cos A cos B + cos C, so
                                         2
                                      sin C ≥ 2 cos A cos B(1 + cos C), and hence
                                                    2
                                                 sin C
                                                          ≥ 2 cos A cos B.
                                                1 + cos C
            In another way
                         X      2                           X      2               2        2
                     1 =     cos A + 2 cos A cos B cos C ≤     cos A + cos C cos A + cos B , so
   19   20   21   22   23   24   25   26   27   28   29