Page 27 - MATINF Nr. 9-10
P. 27

New inequalities in triangle                                                                   27



            Theorem 6. In any triangle ABC holds the following inequality:

                                                                                       
                                  A                     B                     C                 √
                               sin                   sin                   sin
                                                                                       
                                                                                                2R
                max                2        ,            2        ,            2           ≤ √          .
                                B         C           C         A           A
                       1 + cos     + cos     1 + cos     + cos     1 + cos     + cos
                              2        2            2        2            2        2  B     2 4R + r
                                                                                       
                                 2        2            2        2            2        2
                                    A     4R + r
                             P     2
            Proof. We have      cos    =         . It follows that
                                     2      2R
                                   A         A         B        C     4R + r        A
                               sin 2  + cos 2  + cos 2   + cos 2   =         + sin 2  , so
                                    2        2         2         2      2R           2
                                                                    …
                                B         C    4R + r         A        4R + r      A
                       1 + cos 2   + cos 2   =         + sin 2   ≥ 2           · sin  , and hence
                                 2        2      2R           2          2R         2
                                                      A               √
                                                   sin
                                                      2          ≤ √    2R    .
                                                    B         C    2 4R + r
                                           1 + cos 2  + cos 2
                                                    2         2

            Corollary 10. In any triangle ABC hold the following inequalities:
                                 A               √
                             sin
                   P             2              3 2R
                1)                         ≤ √           ;
                               B        C     2 4R + r
                      1 + cos 2  + cos 2
                               2         2
                                 A
                             sin 3
                   P              2               2R − r
                2)                                            ;
                               B        C  ≤ p
                                              2 2R(4R + r)
                      1 + cos 2  + cos 2
                               2         2
                                 A                √
                             cos
                   P             2               s 2R
                3)                         ≤    √         ;
                               B        C     2r 4R + r
                      1 + cos 2  + cos 2
                               2         2
                                      A
                                  sin 2                 p
                   P                  2                   2R(4R + r)
                4)    Å                     ã        ≤                .
                                B         C       A          2s
                        1 + cos 2  + cos 2    cos
                                 2        2       2
            Theorem 7. In any triangle ABC holds the following inequality:
                                                                                 
                                      A                 B                 C               √
                                   sin               sin               sin
                                                                                 
                                                                                          2R
                      max              2      ,          2      ,          2         ≤ √          .
                                  B         C       C         A       A
                             cos     + cos      cos    + cos     cos     + cos
                                2        2        2        2        2        2  B     2 2R + r
                                                                                 
                                   2        2        2        2       2         2
            Proof. We have
                                                                                  …
                          B         C         r         A         r         A        2R + r      A
                     cos 2  + cos 2   = 2 +      − cos 2   = 1 +     + sin 2   ≥ 2           · sin  ,
                          2         2        2R         2        2R         2          2R         2
                                  A             √
                               sin                2R
            and hence              2       ≤ √          .
                              B         C    2 2R + r
                         cos 2   + cos 2
                              2         2
   22   23   24   25   26   27   28   29   30   31   32