Page 26 - MATINF Nr. 9-10
P. 26

26                                                                                    M. Bencze



            Corollary 8. In any acute triangle ABC hold the following inequalities:

                            sin 2A                 s
                   P
                1)                        ≤ p             ;
                             2
                                      2
                      1 + sin B + sin C        3r(2R − r)
                                    A
                         cos A sin 2          …
                   P                2        1   2R − r
                2)                        ≤             ;
                                      2
                             2
                      1 + sin B + sin C      4     3r
                                    A
                         cos A cos 2
                   P                2            4R + r
                3)                        ≤ p               ;
                                      2
                             2
                      1 + sin B + sin C      4 3r(2R − r)
                                                   2
                           r b r c cos A          s R
                   P
                4)                        ≤ p               .
                             2
                                      2
                      1 + sin B + sin C      2 3r(2R − r)
            Theorem 5. In any triangle ABC holds the following inequality:
                                   A                     B                    C                 √
                                                                                      
                               cos                   cos                  cos
                                                                                      
                                                                                                2R
                 max               2        ,            2        ,           2           ≤ √          .
                              2  B      2  C        2  B     2  A        2  A     2  B     2 2R − r
                        1 + sin   + sin      1 + sin    + sin     1 + sin    + sin    
                                 2        2            2        2           2        2
                                    A     2R − r
                             P     2
            Proof. We have      sin    =         . It follows that
                                     2      2R
                                   A         A        B        C     2R − r         A
                               cos 2  + sin 2  + sin 2   + sin 2  =          + cos 2  , so
                                    2        2        2         2      2R           2
                                                                    …
                                B        C     2R − r         A        2R − r       A
                       1 + sin 2   + sin 2  =          + cos 2  ≥ 2            · cos  , and hence
                                2         2      2R           2          2R         2
                                                      A               √
                                                  cos                   2R
                                                      2         ≤ √          .
                                                    B        C     2 2R − r
                                           1 + sin 2  + sin 2
                                                    2         2

            Corollary 9. In any triangle ABC hold the following inequalities:
                                 A               √
                             cos
                   P             2              3 2R
                1)            B         C  ≤ √          ;
                      1 + sin 2  + sin 2      2 2R − r
                               2        2
                                 A
                             cos 3
                   P              2               4R + r
                2)            B         C  ≤ p               ;
                      1 + sin 2  + sin 2      2 2R(2R − r)
                               2        2
                                 A                    √
                             sin
                   P             2            (4R + r) 2R
                3)            B         C  ≤     √          ;
                      1 + sin 2  + sin 2       2s 2R − r
                               2        2
                                      A                   √
                                 cos 2
                   P                  2                  s 2R
                4)    Å         B         C  ã   A  ≤    √        .
                        1 + sin 2  + sin 2    sin      2r 2R − r
                                2         2      2
   21   22   23   24   25   26   27   28   29   30   31