Page 23 - MATINF Nr. 9-10
P. 23

New inequalities in triangle




            Mih´aly Bencze     1



                In this paper we present some new inequalities in triangle.

            Theorem 1. In any triangle ABC hold the following inequalities:

                              ß                                                               ™
                                        sin A                sin B                sin C
                          max                       ,                    ,
                                                             2
                                                                                  2
                                       2
                                                                      2
                                                 2
                                                                                           2
                                1 + cos B + cos C 1 + cos C + cos A 1 + cos A + cos B
                                      R          1
                               ≤ √           ≤ √ .
                                 2 R − r   2      3
                                      2
                                                           2
                                                          s − (2R + r)  2
                                          P     2
            Proof. We have the identity     cos A = 1 −                  .
                                                                2R 2
                                                   2
                                                                2
                                            2
                By Gerretsen’s inequality s ≤ 4R + 4Rr + 3r we derive that
                                                                       2
                                                X                   r
                                                       2
                                                    cos A ≥ 1 −         .
                                                                   R
            It follows that
                                                               2
                                                             R − r  2
                                                                           2
                                                      2
                           2
                                             2
                                    2
                        sin A + cos A + cos B + cos C ≥              + sin A, so
                                                               R 2  √
                                                2
                                                                        2
                                               R − r 2             2 R − r   2
                                        2
                                                            2
                               2
                       1 + cos B + cos C ≥             + sin A ≥              · sin A, and hence
                                                 R 2                   R
                                               sin A                R          1
                                                            ≤ √            ≤ √ ,
                                               2
                                                        2
                                        1 + cos B + cos C      2 R − r   2      3
                                                                    2
            where the last inequality holds from Euler’s R ≥ 2r inequality.
            Corollary 1. In any triangle ABC hold the following inequalities:
                             sin A               3R         √
                   P
                1)                        ≤ √            ≤    3
                                      2
                             2
                      1 + cos B + cos C      2 R − r   2
                                                  2
            (a refinement of the inequality from problem O.600 from Mathematical Reflections);
                                2
                             sin A                s
                   P
                2)                        ≤ √           ;
                      1 + cos B + cos C      2 R − r   2
                             2
                                      2
                                                  2
                                    A
                          sin A sin 2
                   P                2          2R − r
                3)                        ≤ √           ;
                                      2
                             2
                      1 + cos A + cos C      4 R − r   2
                                                  2
                                    A
                          sin A cos 2
                   P                2          4R + r
                4)                        ≤ √           .
                                      2
                             2
                                                  2
                      1 + cos B + cos C      4 R − r   2
               1
                Profesor dr., Bras , ov, benczemihaly@gmail.com
                                                           23
   18   19   20   21   22   23   24   25   26   27   28