Page 99 - MATINF Nr. 7
P. 99

˘
            PROBLEME DE MATEMATICA PENTRU CONCURSURI                                                       99

                                                                           –    É              É           ™
                                                                                   k − 12        2(k − 12)
                Cazul 1. k ∈ [12, 18]. Atunci prin intersect , ie obt , inem a ∈ 2 +      , 2 +             ,
                                                              •                      6               3     ˜
                                                                                   3(k − 4)    p
                      2
                                                                     p
                                2
                           2
                                            2
            s , i cum 2(b +c )−a = 2k−3a rezult˘a c˘a M k = 12 − 4 6(k − 12),               − 2 6(k − 12) .
                                                                                      2
                                                                           –    É              É           ™
                                                                                   k − 18        2(k − 12)
                Cazul 2. k ∈ [18, 36]. Atunci prin intersect , ie obt , inem a ∈ 3 +      , 2 +             ,
                     •                                      ˜                        2               3
                                          k
                             p                  p
            s , i M k = 12 − 4 6(k − 12),   − 9 2(k − 18) .
                                          2
                                                                              √
                                                                               7
            M 128. Ar˘atat ,i c˘a  log 3 + log 5 + log 7 + . . . + log 15 > 7 2.
                                      2
                                                                     14
                                                       6
                                               4
                                                                                Dorin M˘arghidanu, Corabia
            Solut ,ie. Vom demonstra, mai general, c˘a pentru orice n ∈ N, n ≥ 2, avem
                                                                             È
                          log 3 + log 5 + log 7 + . . . + log (2n + 1) > n ·  2n  1 + log (n + 1).
                             2       4       6             2n                          2
            ˆ
            Intr-adev˘ar, pentru orice m ∈ N, m ≥ 2, avem
                                      m + 1              m + 2                m + 2
             log (m + 1) = 1 + log           > 1 + log          > 1 + log            = log    (m + 2). (∗)
                m                   m                  m                 m+1              m+1
                                        m                m + 1                m + 1
            Notˆand P n = log 3·log 5·log 7·. . .·log (2n+1) s , i Q n = log 4·log 6·log 8·. . .·log 2n+1 (2n+2)
                             2
                                    4
                                                    2n
                                                                                       7
                                          6
                                                                                5
                                                                          3
                                                       2
            din (∗) rezult˘a c˘a P n > Q n . Prin urmare P > P n Q n = log 3·log 4·log 5·. . .·log 2n+1 (2n+2) =
                                                                                    4
                                                                       2
                                                       n
                                                                             3
                                     p
            log (2n + 2), deci P n >    1 + log (n + 1). Cum tot , i logaritmii considerat , i sunt pozitivi, prin
               2                               2                                                      √
            aplicarea Inegalit˘at ,ii mediilor avem log 3 + log 5 + log 7 + . . . + log (2n + 1) ≥ n ·  n  P n >
                È
                                                                                    2n
                                                                      6
                                                              4
                                                     2
                  p                        p
            n ·  n   1 + log (n + 1) = n ·  2n  1 + log (n + 1). Pentru n = 7 obt , inem inegalitatea din enunt , .
                            2
                                                     2
                                         n      3     2             k
                                        X   (3k + 9k + 11k + 4) C
                                                                                      ∗
            M 129. Calculat ,i suma                                 2k+1  , unde n ∈ N .
                                                        k + 2
                                        k=1
                                                                                     Mih´aly Bencze, Bras , ov
                                                                      2
                               3
                                     2
                                                                                             2
                           (3k + 9k + 11k + 4) C    k      [(4k + 6)(k + k + 1) − (k + 2)(k − k + 1)] C   k
            Solut ,ie. Cum                         2k+1  =                                                2k+1
                                       k + 2                                      k + 2
                 2
                                              k
               (k + k + 1)(2k + 2)(2k + 3)C   2k+1
                                                                                     k+1
                                                                                                        k
                                                                                             2
                                                                          2
                                                      2
                                                                 k
            =                                     −(k −k+1)C     2k+1  = (k +k+1)C   2k+3  −(k −k+1)C   2k+1 ,
                         (k + 1)(k + 2)
                               3
                                      2
                         n
                        P (3k + 9k + 11k + 4) C     k        P
                                                                                k+1
                                                                    2
                                                                                                     k
                                                                                         2
                                                              n
            rezult˘a c˘a                            2k+1  =      (k + k + 1)C  2k+3  − (k − k + 1)C 2k+1   =
                        k=1            k + 2                 k=1
                                   1
                                          2
              2
            (n + n + 1)C  n+1  − C = (n + n + 1)C     n+1  − 3.
                          2n+3     3                 2n+3
            M 130. Fie z 1 , z 2 , . . . , z 12 numere complexe distincte dou˘a cˆate dou˘a s , i avˆand modulele egale.
            Dac˘a |z 1 − z 2 | = |z 4 − z 5 | = |z 7 − z 8 | = |z 10 − z 11 |, |z 2 − z 3 | = |z 5 − z 6 | = |z 8 − z 9 | = |z 11 − z 12 |,
            |z 3 − z 4 | = |z 6 − z 7 | = |z 9 − z 10 | = |z 12 − z 1 | s , i punctele de afixe z 1 , z 2 , . . . , z 12 sunt, ˆın aceast˘a
            ordine, vˆarfurile unui poligon convex, atunci ar˘atat ,i c˘a z 1 + z 2 + . . . + z 12 = 0.
                                                                                     Sorin Ulmeanu, Pites , ti
   94   95   96   97   98   99   100   101   102   103   104