Page 103 - MATINF Nr. 7
P. 103

˘
            PROBLEME DE MATEMATICA PENTRU CONCURSURI                                                     103


                                                      n−l
                Dac˘a p = n, atunci definim x l = (−1)    u n−l+1 , pentru l ∈ {1, . . . , n}. Evident, (x 1 , . . . , x n )
            este solut , ie a sistemului s , i, sistemul fiind Cramer, solut , ia g˘asit˘a este unic˘a.

                                        n          p                          n  ”                   —
                                        P         P       n−i                P             n−i
                Dac˘a p ≤ n − 1, atunci    s k+i =   (−1)    u n−i+1 s k+i−1 +    1 + (−1)    u n−i+1 s k+i−1 .
                          ¨            i=p        i=1                       i=p+1
                             (−1) n−l u n−l+1 , dac˘a l ∈ {1, . . . , p}
            Definim x l =              n−l                                 . Evident, (x 1 , . . . , x n ) este solut , ie
                             1 + (−1)    u n−l+1 , dac˘a l ∈ {p + 1, . . . , n}
            a sistemului s , i, sistemul fiind Cramer, solut , ia g˘asit˘a este unic˘a.
            M 135. Demonstrat ,i c˘a s , irul (x n )  definit prin
                                                n≥1

                               π                  3π                 5π                           (2n − 1)π
                  2C 2   cos       + 3C  3  cos        + 4C 4  cos        + . . . +(n + 1)C n+1 cos
                     n+1    2n + 1       n+1    2n + 1      n+1    2n + 1                  n+1      2n + 1
             x n =
                                     π               3π              5π                  (2n − 1)π
                                                                                    n
                             1
                                              2
                                                              3
                           C sin         + C sin          + C sin         + . . . + C sin
                             n
                                                              n
                                             n
                                                                                    n
                                  2n + 1          2n + 1           2n + 1                  2n + 1
            este convergent s , i calculat ,i limita sa.
                                               Mihai Florea Dumitrescu, Potcoava s , i Costel B˘alc˘au, Pites , ti
                                                     k+1
                                                                     k
            Solut ,ie.  Utilizˆand formula (k + 1)C n+1  = (n + 1)C , deducem c˘a x n =     (n + 1)a n  , unde
                                                                     n
                                                                                                b n
                           π              3π                 (2n − 1)π                  π              3π
                                                                                                2
                                                       n
                                   2
                                                                                 1
                    1
            a n = C cos         +C cos         +. . .+C cos            s , i b n = C sin    +C sin          +
                                                                                n
                   n
                                   n
                                                       n
                                                                                                n
                         2n + 1         2n + 1                2n + 1                 2n + 1          2n + 1
                         (2n − 1)π                          π
                    n
            . . . + C sin          . Astfel notˆand t =          s , i z = cos t + i sin t s , i folosind formula lui
                    n
                           2n + 1                        2n + 1
                                                                                                   2 n
                                                                                             (1 + z ) − 1
                                                                                   n 2n−1
                                                               1
                                                                      2 3
            Moivre s , i Binomul lui Newton, avem a n + ib n = C z + C z + . . . + C z    =        z       =
                                                                      n
                                                               n
                                                                                   n
                                                n
                                           n
                                 n
             (1 + cos 2t + i sin 2t) − 1  2 cos t(cos nt + i sin nt) − 1
                                                                            n
                                                                                 n
                                       =                                 = 2 cos t[cos(n−1)t+i sin(n − 1)t]
                   cos t + i sin t                 cos t + i sin t
                                           n
                                                n
                                                                                      n
                                                                                  n
            − cos t + i sin t, deci a n = 2 cos t cos(n − 1)t − cos t s , i b n = 2 cos t sin(n − 1)t + sin t,
                                  π       (n − 1)π          π                 π         3π            π
                                                                     n
                         n
            adic˘a a n = 2 cos n       cos          − cos        = 2 cos  n        sin       − cos         s , i
                               2n + 1      2n + 1         2n + 1           2n + 1     4n + 2        2n + 1
                            π       (n − 1)π           π                 π         3π            π
                   n
                                                                n
            b n = 2 cos n        sin          + sin         = 2 cos n        cos         + sin        . Cum
                          2n + 1      2n + 1        2n + 1            2n + 1     4n + 2        2n + 1
                         π   (1 )  lim n(cos  π  −1)    lim (−2n sin 2  π  )                    (n + 1)a n
                              ∞
                                                                             0
             lim cos n        = e n→∞      2n+1    = e n→∞         4n+2  = e = 1, iar x n =                =
               •
            n→∞       2n + 1                                       ˜                                b n
                              3π          π       n + 1       π
             2 n  (n + 1) sin      cos n       −     n  cos                              3π      3π
                                                             ‹
                           4n + 2      2n + 1     2        2n + 1   s , i lim (n + 1) sin    =     , rezult˘a
                            3π          π       1        π             n→∞             4n + 2     4
                  2 n  cos       cos n       +     sin
                          4n + 2      2n + 1    2 n   2n + 1
                      3π
            c˘a x n →    (deci este convergent).
                      4
                                    ∞    2
                                   X    k     1
            M 136. Ar˘atat ,i c˘a          ≤ .
                                       e 2k   4
                                   k=1
                                                                     Sladjan Stankovik, Macedonia de Nord
            Solut ,ie (Leonard Mihai Giugiuc, Drobeta Turnu Severin). Pentru fiecare n ≥ 3 arbitrar
                                    n                                               n
                                   P    k    x n+1 −1                     0        P     k−1          0
            fixat not˘am f (x) =        x =          , x ∈ (0, 1). Avem f (x) =        kx    , deci xf (x) =
                                               x−1
                                   k=0                                             k=1
   98   99   100   101   102   103   104   105   106   107   108