Page 96 - MATINF Nr. 7
P. 96

˘
            96                                        PROBLEME DE MATEMATICA PENTRU CONCURSURI


            M 123. Ar˘atat ,i c˘a pentru orice n, x, y, z > 0 are loc inegalitatea

             n(n + 3)(x + y) + 3    n(n + 3)(y + z) + 3     n(n + 3)(z + x) + 3                  27
                                  +                      +                      ≥ 6n +                      .
               x + y + (n + 1)z       y + z + (n + 1)x       z + x + (n + 1)y            (n + 3)(x + y + z)

                                                                                        Daniel Jinga, Pites , ti


            Solut ,ia 1. Not˘am x + y + (n + 1)z = a, y + z + (n + 1)x = b s , i z + x + (n + 1)y = c, deci
                                                                                                   a + b + c
            a, b, c > 0. Avem a + b + c = (n + 3)(x + y + z) s , i a = x + y + z + nz, deci nz = a −
                                                                                                     n + 3
                          (n + 2)a − b − c                (n + 2)b − c − a        (n + 2)c − a − b
            s , i astfel z =              . Analog, x =                    s , i y =               . Rezult˘a
                              n(n + 3)                        n(n + 3)                n(n + 3)
            c˘a n(n + 3)(x + y) + 3 = (n + 1)(b + c) − 2a + 3 s , i analoagele, deci inegalitatea din enunt , devine
             (n + 1)(b + c) − 2a + 3   (n + 1)(c + a) − 2b + 3    (n + 1)(a + b) − 2c + 3             27
                                     +                          +                          ≥ 6n +           ,
                        a                         b ‹               ‹      c                     a + b + c
                             b + c   c + a    a + b        1    1   1                       27
            adic˘a (n + 1)         +       +         + 3     +    +      ≥ 6(n + 1) +             , care este
                               a       b        c          a    b    c                  a + b + c
                                                                       b + c   c + a    a + b   b    a    c
            adev˘arat˘a deoarece, folosind Inegalitatea mediilor, avem       +       +        =   +    +   +
                                                                         a       b        c     a    b    b
             b   a    c                    1    1   1        9
              +    +    ≥ 2 + 2 + 2 = 6 s , i  +  +   ≥           .
             c   c    a                    a    b   c    a + b + c
            Solut ,ia 2. (Titu Zvonaru, Com˘anes , ti). Folosind Inegalitatea HM-AM avem

                          3                   3                   3                    27
                                   +                    +                   ≥                    . (1)
                  x + y + (n + 1)z    y + z + (n + 1)x    z + x + (n + 1)y     (n + 3)(x + y + z)

                                                                       2
                                                                            2
                                                                  2
            Aplicˆand Inegalitatea lui Bergstrom s , i inegalitatea x + y + z ≥ xy + yz + zx avem
                                          x + y                               (x + y) 2
                                X                               X
                         (n + 3)                      = (n + 3)
                                                                            2
                                    x + y + (n + 1)z                (x + y) + (n + 1)(xz + yz)
                                                            4(x + y + z) 2
                        ≥ (n + 3) ·
                                            2
                                                 2
                                       2
                                    2(x + y + z ) + 2(xy + yz + zx) + 2(n + 1)(xy + yz + zx)
                                   P    2           P                  P   2   P
                           2(n + 3)   x + 4(n + 3)     xy          2n (   x −     xy)
                        =       P              P           = 6 + P               P      ≥ 6. (2)
                                    2
                                                                      2
                                  x + (n + 2)     xy                x + (n + 2)     xy
            Prin adunarea inegalit˘at , ii (2) ˆınmult , it˘a cu n cu inegalitatea (1) rezult˘a inegalitatea din enunt , .
            M 124. Fie n ∈ N, n ≥ 2 s , i a 1 , a 2 , . . . , a n ∈ R astfel ˆıncˆat 0 < a 1 ≤ a 2 ≤ . . . ≤ a n . Ar˘atat ,i c˘a
                                                                                            ‹
                                                2
                          n(n − 1)      X     3a − 2a i a j + 3a 2 j  3n(n − 1)  a 1  a n  2
                                                i
                                    ≤                            ≤                 +     −     .
                              2                   (a i + a j ) 2        8       a n   a 1  3
                                      1≤i<j≤n
                                                        Sorin Ulmeanu, Pites , ti s , i Nicolae Papacu, Slobozia

            Solut ,ie (Titu Zvonaru, Com˘anes , ti). Prima inegalitate este adev˘arat˘a pentru orice numere reale
                                                                                   n (n − 1)
            a 1 , a 2 , . . . , a n neopuse dou˘a cˆate dou˘a, rezultˆand prin adunarea celor  relat , ii de tipul
                                                                                       2
                                      2
                                                                   2
                                   3a − 2a i a j + 3a 2 j  =  2 (a i − a j ) + (a i + a j ) 2  ≥ 1.
                                      i
                                       (a i + a j ) 2           (a i + a j ) 2
   91   92   93   94   95   96   97   98   99   100   101