Page 23 - MATINF Nr. 7
P. 23

Asupra Problemei B84 din Crux Mathematicorum




            Marin Chirciu      1



                Articolul pornes , te de la Problema B84 din Crux Mathematicorum, June 2021 (rubrica Bonus
            Problems), propus˘a de George Apostolopoulos.
                Vom demonstra inegalitatea propus˘a, o vom ˆınt˘ari s , i apoi vom face dezvolt˘ari cu inegalit˘at , i
            din aceeas , i clas˘a de probleme cu ˆın˘alt , imi s , i raze ale cercurilor exˆınscrise unui triunghi.

                Vom utiliza urm˘atorul rezultat.
                                                                   2
                                                                          2
                                                               R (p + 5r + 8Rr)
                                                     r b + r c
                       ˆ
                                                X
            Lema 1. In orice ∆ABC avem:                     =                      .
                                                                    2
                                                                         2
                                                    h b + h c   r (p + r + 2Rr)
                                            S            2S
            Demonstrat¸ie. Folosind r a =        s , i h a =  obt , inem:
                                           p − a          a
                                  S     S                                         P
                  r b + r c      p−b   p−c
              X              X       +        1  X           abc             abc     (a + b) (a + c) (p − a)
                          =                =                              =      ·   Q         Q
                  h b + h c       2S  +  2S   2     (b + c) (p − b) (p − c)   2        (b + c)   (p − a)
                                  b     c
                              2
                                        2
                                  2
                                                           2
                                                                 2
                    4Rrp     p (p + 5r + 8Rr)         R (p + 5r + 8Rr)
                 =        ·                         =                     .
                                2
                                                                2
                                                           2
                                     2
                      2    2p (p + r + 2Rr) · pr  2    r (p + r + 2Rr)
                S˘a trecem la rezolvarea problemei ment , ionate.
            Aplicat , ia 1 ( Problema B84 din Crux Mathematicorum, Vol 47, No. 6 (June 2021)). Let
            h a , h b , h c be the altitudes, r a , r b , r c the exradii, r the inradius, and R the circumradius of a
            triangle ABC. Prove that
                                                                                  ‹
                                                                           √         2
                                    r a + r b    r b + r c    r c + r a          R
                                                                        ≤ 3 2         .
                                  p        2  + p  2      + p
                                                                 2
                                      2
                                     h + h b      h + h  2 c   h + h  2 a        2r
                                                   b
                                                                 c
                                      a
                                                                                      George Apostolopoulos
            Solut ,ie. Avem:
                                                                                         ‹
                                                                              (∗) √        2
                            X                X                √ X                      R
                                  r b + r c        r b + r c          r b + r c
                                           ≤     È          =   2             ≤ 3 2          ,
                                p                         2
                                    2
                                  h + h  2          (h b +h c)        h b + h c        2r
                                    b    b
                                                       2
                                            ‹ 2                                   ‹ 2
                                                                 2
                                                                                            2
                                                           2
                                                                                                  2
                         P r b + r c       R    Lema 1 R (p + 5r + 8Rr)           R        p + 5r + 8Rr
            unde (∗) ⇔               ≤ 3         ⇐⇒                        ≤ 3         ⇔                   ≤
                                                                 2
                                                                                            2
                                                                                                 2
                                                            2
                            h b + h c      2r           r (p + r + 2Rr)          2r        p + r + 2Rr
             3R
                                                     2
                                                                                                      2
                              2
                        2
                                                                                      2
                                                2
                                                                   2
                ⇔ 4r (p + 5r + 8Rr) ≤ 3R (p + r + 2Rr) ⇔ p (3R − 4r) + r (6R − 29Rr − 20r ) ≥ 0,
             4r
                                                      2
                                                                    2
            deci folosind Inegalitatea lui Gerretsen p ≥ 16Rr − 5r este suficient s˘a ar˘at˘am c˘a:
                                                                2
                                 16Rr − 5r 2    (3R − 4r) + r 6R − 29Rr − 20r  2    ≥ 0 ⇔
               1
                Profesor, Colegiul Nat , ional ,,Zinca Golescu”, Pites , ti, marin.chirciu@yahoo.com
                                                           23
   18   19   20   21   22   23   24   25   26   27   28