Page 16 - MATINF Nr. 6
P. 16

16                                                                                D. M˘arghidanu



            relations which, - by multiplying part by part, lead to:


                                 (G−x 1 )+(G−x 2 )+...+(G−x )  G k           kG−S k   G k
                                                    k
                                e         G           ≤                  ⇔ e   G   ≤     .                (2)
                                                         x 1 · x 2 · . . . · x n      P k
            From (1) and the right inequality in Lemma 2, we obtain:
                                                                     x  −G
                                                            x k+1     k+1
                                              G ≤ x k+1 →        ≤ e   G                                 (3 1 )
                                                             G
                                                            x k+2    x k+2 −G
                                              G ≤ x k+2 →        ≤ e   G                                 (3 2 )
                                                             G
                                                        . . .

                                                            x n    x n −G
                                                G ≤ x n →      ≤ e  G                                 (3 n−k )
                                                            G
            relations which - by multiplying part by part, turn to:

                                                               (x  +...+ x n )−(n−k)·G
                                        x k+1 · x k+2 · ... · x n  k+1
                                                           ≤ e         G        .                         (3)
                                               G n−k
                  x k+1 · x k+2 · . . . · x n  x k+1 · x k+2 · . . . · x n
            But,                      =   √                    =
                         G n−k            n                 n−k
                                            x 1 · x 2 · . . . · x n
                                                                    k
                                                   (x 1 · x 2 · . . . · x n ) · (x k+1 · x k+2 · . . . · x n )
                                                                    n
                             x k+1 · x k+2 · . . . · x n
                          =                     k  =                                         =
                             (x 1 · x 2 · . . . · x n ) 1−  n   x 1 · x 2 · . . . · x n
                                                                  k
                                                 (x 1 · x 2 · . . . · x n )  n  G k
                                               =                    =    ,                                (4)
                                                   x 1 · x 2 · . . . · x k  P k
            So (3) can be restated as:
                                               G k      (x k+1 +...+x n )−(n−k)·G
                                                     ≤e         G        .                                (5)
                                                P k
            From (2) and (5) by transitivity, it results:


              k · G − S k ≤ (x k+1 + . . . + x n ) − (n − k) · G ⇔ k · G + (n − k) · G ≤ S k + (x k+1 + . . . + x n )

                                                ⇔ n · G ≤ S n ⇔ G ≤ A.


                The equality is obtained when we have equality everywhere in (1) so when x 1 = x 2 = . . . =
            x n .



            References


            [1] D. M˘arghidanu O demonstrat¸ie inductiv˘a a Inegalit˘at ,ii mediilor, RMGO, Anul IV , nr. 1,
                2020, pp. 33-35, on-line, http://rmgo.upit.ro/RMGO4/index.html#p=32.
   11   12   13   14   15   16   17   18   19   20   21