Page 109 - MATINF Nr. 3
P. 109

˘
            PROBLEME DE MATEMATICA PENTRU CONCURSURI                                                     109


                                        √               √ Ä      √        ä    √  Ç     …  s − 10  å
                                   2
                                                2
            Prin urmare, q = 5+3t −4 1 + 3t s , i S =     3 2 −    1 + 3t 2  =   3 2 −             . Ar˘at˘am
                                                                                             2
            c˘a exist˘a un triunghi ABC ce satisface ipotezele problemei s , i are aria egal˘a cu valoarea obt , inut˘a,
                 √ Ä      √        ä
            S =    3 2 −    1 + 3t . Consider˘am polinomul f(w) = (w − x)(w − y)(w − z), w ∈ R. Avem
                                  2
                                                           √
                                               Ä                    ä
                                                                                        2
                                                                                                       2
                             2
                                                                             0
                      3
                                        2
                                                      2
                                                                   2
            f(w) = w − 3w + 3(1 − t )w − 5 + 3t − 4 1 + 3t , deci f (w) = 3(w − 2w + 1 − t ) are
                                                                     √
                                                        3
                                                             2
                                                                             2
            r˘ad˘acinile 1−t s , i 1+t. Avem f(1−t) = 2t −6t −4+4 1 + 3t > 0 (prin calcule, inegalitatea
                                                                                               √
                                 3
                                                                                3
                                         2
                                                                                                       2
                                                                                      2
            este echivalent˘a cu t (1 − t) (t − 4) < 0, adev.) s , i f(1 + t) = −2t − 6t − 4 + 4 1 + 3t < 0
                                                            3
                                                                    2
                                                               3
            (prin calcule, inegalitatea este echivalent˘a cu t (t + 6t + 9t + 4) > 0, adev.) Rezult˘a c˘a s , irul
            lui Rolle asociat ecuat , iei f(w) = 0 este (−, +, −, +), deci r˘ad˘acinile x, y, z ale ecuat , iei sunt
                                                                     √
                                                            2
            reale (s , i distincte). Mai mult, cum f(0) = −3t − 5 + 4 1 + 3t < 0 (prin calcule, inegalitatea
                                                                             2
                                          2
                                     2
            este echivalent˘a cu 9 (t − 1) > 0, adev.), rezult˘a c˘a x, y, z > 0. Dar x + y + z = 3, deci
            x, y, z ∈ (0, 3), de unde rezult˘a c˘a a, b, c > 0. De asemenea, avem x + y < 3 < 3 + z, de unde
            rezult˘a c˘a a + b > c. Analog se obt , ine c˘a a + c > b s , i b + c > a, ceea ce ˆıncheie demonstrat , ia
            existent , ei triunghiului ABC cu propriet˘at , ile impuse.
                                                                 Z  b         1
            M 38. Fie a, b ∈ R, a < b. Calculat ,i integrala I =                        dx.
                                                                            4
                                                                     (x − a) + (x − b) 4
                                                                  a
                                                                                        Daniel Jinga, Pites , ti
                                     b − a                                                  a + b
            Solut ,ie.  Notˆand c =         s , i aplicˆand schimbarea de variabil˘a x = t +      avem I =
                                                                                              2
            Z  c                       2 Z  c
                         1                            1
                                   dt = 2                       dt, funct , ia integrat˘a fiind par˘a. Astfel I =
                                                    4
                       4
                (t + c) + (t − c) 4           (t + c) + (t − c) 4
              −c                           0
                       1                        1                                     1
            Z  c                    Z  c                       Z  c
                               dt =                       dt =     Ä            √    ä Ä            √    ä dt
                 4
                       2 2
                t + 6t c + c  4           2     2  2    4            2     2        2    2     2        2
              0                       0 (t + 3c ) − 8c          0   t + 3c − 2 2c       t + 3c + 2 2c

                         c
                  1    Z Å          1                   1         ã          1    Z  c          1
            =    √                      √     −             √       dt =    √               Ä √         ä −
                                                                                                         2
                                                       2
                                                 2
                                   2
                             2
                4 2c 2  0   t + 3c − 2 2c   2    t + 3c + 2 2c   2         4 2c 2  0    t + c( 2 − 1)
                                                                                        2
                               !                                                                            c
                                              Ç                                                          å
                     1                    1          1               t             1               t
                 Ä √         ä 2  dt =   √        √        arctg   √        −   √       arctg   √
             2
             t + c( 2 + 1)             4 2c  2   c( 2 − 1)       c( 2 − 1)    c( 2 + 1)       c( 2 + 1)      0
                √              √           √             √
               ( 2 + 1)arctg ( 2 + 1) − ( 2 − 1)arctg ( 2 − 1)                              √          3π
            =                         √                           . Astfel ˆınlocuind arctg ( 2 + 1) =     s , i
                                     4 2c  3       √                                                    8
                   √          π                   ( 2 + 1)π
            arctg ( 2 − 1) =    , obt , inem c˘a I =         .
                               8                   2(b − a) 3
                                                             π
            M 39. Determinat ,i funct ,iile continue f, g : 0,  → R care verific˘a simultan relat ,iile
                                                             2
                                                                                              π
                                                                                          h    i
                                                       3
                                                                2
                                        2
                          3
                        f (x) − 3f(x)g (x) = cos x, g (x) − 3f (x)g(x) = − sin x, ∀x ∈ 0,
                                                                                              2
            s , i pentru care aria suprafet ,ei plane cuprinse ˆıntre graficele lor este:
                a) maxim˘a;      b) minim˘a.
                                                                                Dorin M˘arghidanu, Corabia
                                            π
            Solut ,ie.  Pentru orice x ∈ 0,    , ˆınmult , ind a doua relat , ie din enunt , cu −i s , i adunˆand-o la
                                             2
                                            3
            prima, rezult˘a c˘a (f(x) + ig(x)) = cos x + i sin x, deci (f(x), g(x)) ∈ (f k (x), g k (x)) | k = 0, 2 ,
                                x + 2kπ                  x + 2kπ
            unde f k (x) = cos           s , i g k (x) = sin     . Fiecare dintre cele trei perechi verific˘a
                                   3                  î √                                            √
                                                π        3  3 ó       π         1          π      î   3   1  ó
            egalit˘at , ile din enunt , . Cun f 0  0,  =  , 1 , g 0  0,   = 0,    , f 1  0,    = −     , − ,
                                                2       2             2         2          2         2    2
   104   105   106   107   108   109   110   111   112   113   114