Page 114 - MATINF Nr. 3
P. 114

˘
            114                                       PROBLEME DE MATEMATICA PENTRU CONCURSURI


            M 98. Determinat , i cel mai mare num˘ar real k pentru care inegalitatea

                                                     2
                                             2
                                                             2
                                           (a + k)(b + k)(c + k) ≤ (1 + k)   3
            are loc pentru orice a, b, c ∈ [0, ∞) astfel ˆıncˆat a + b + c = 3.


                                          Leonard Giugiuc, Drobeta Turnu Severin s , i Costel B˘alc˘au, Pites , ti

            M 99. Se consider˘a funct , ia f : [0, ∞) → [0, 1) astfel ˆıncˆat

                                         »                       »
                                 ln 1 +     f(x) = x + ln 1 −      f(x) , ∀x ∈ [0, ∞).


                a) Demonstrat , i c˘a ecuat , ia funct , ional˘a are solut , ie.

                b) Ar˘atat , i c˘a f admite primitive.
                                                                                    √
                                                        Z  a b−1        Z  b 1−a  1 +  x
                c) Fie a, b ∈ (0, 1) cu a < b. Ar˘atat , i c˘a  f(x) dx +    ln     √ dx > 1.
                                                                                1 −   x
                                                          0              0
                                                                              Floric˘a Anastase, Lehliu Gar˘a


            M 100. Fie f, g : [a, b] → R dou˘a funct , ii derivabile cu derivatele continue astfel ˆıncˆat
              2
                      2
            f (x) + g (x) 6= 0, oricare ar fi x ∈ [a, b]. Demonstrat , i c˘a
                                       s
                                                                      
                                      b     0         0                  2       2
                                         (f (x)) + (g (x))             f (b) + g (b)
                                   Z            2          2
                                                            dx ≥ ln                  .
                                                                                 2
                                             2
                                                     2
                                                                         2
                                            f (x) + g (x)              f (a) + g (a)
                                    a
                                                                                  Cristinel Mortici, Viforˆata
   109   110   111   112   113   114   115   116   117   118   119