Page 35 - MATINF Nr. 1
P. 35

Inegalit˘at , i integrale                                                                      35



                  Astfel, inegalitatea de demonstrat rezult˘a din:

                                         å   Ç      å                 2   Ç          å   Ç      å
                              Ç
                               a + b          a + b            (b − a)          a + b      a + b
                                                          0
                                     − a f            − f (c 1 )        − b −          f

                                 2              2                 8               2          2



                                                       2                            2
                                           2    (b − a)                      (b − a)
                                                                                              0
                               0
                                                           0
                                                                    0
                           −f (c 2 )  (b − a)      =     |f (c 1 ) + f (c 2 )| ≤     · max |f (x)| .
                                       8           8                            4     x∈[0,1]

               4. Fie f : [0, ∞) → [0, ∞) o funct , ie integrabil˘a. Ar˘atat , i c˘a:
                                             1            1              1
                                           Z            Z              Z
                                                             2
                                                                            3
                                              f (x) dx ·   f (x) dx ≤      f (x) dx.
                                            0            0              0
                  Solut ,ie. Din inegalitatea lui Schur de gradul al III-lea, avem:
                                      3
                                               3
                                                                                         2
                             3
                                                                           2
                            f (x) + f (y) + f (z) + 3f (x) f (y) f (z) ≥ f (x) f (y) + f (y) f (x)
                                                                   2
                                                     2
                                                                                 2
                                       2
                                    +f (y) f (z) + f (z) f (y) + f (z) f (x) + f (z) f (y) ,
                  (∀) x, y, z ∈ [0, ∞) , de unde prin integrare ˆın funct , ie de cele trei variabile, obt , inem
                                 Z  1             Ç Z  1       å 3    Z  1          Z  1
                                                                           2
                                      3
                                3    f (x) dx + 3      f (x) dx   ≥ 6    f (x) dx ·    f (x) dx
                                  0                  0                 0             0
                                                1            1               1
                                              Z            Z               Z
                                                                                3
                                                  2
                                        ⇒ 6      f (x) dx ·    f (x) dx ≤ 6    f (x) dx,
                                       Jensen  0             0               0
                  ceea ce ˆıncheie demonstrat , ia.
               5. Fie f : [0, ∞) → [0, ∞) o funct , ie integrabil˘a pe orice interval [0, a] , a > 0, astfel incˆat
                                                ó
                                 x
                                       t
                  f (x) ≤  1 2 s , i  R î Ä ä  − f (t) dt ≤ 1, (∀) x ∈ (0, ∞) . S˘a se arate c˘a
                                   f
                           x     0    2
                                                         1
                                                       Z
                                                           f (x) dx ≤ 1.
                                                        0
                  Solut ,ie. Relat , ia din enunt , poate fi scris˘a sub forma
                                          Z x             Å    Z  x      ã
                                            2           1
                                             f (t) dt ≤    1 +    f (t) dt , (∀) x > 0
                                           0            2       0
                                               Z  x          1  Ç    Z  2x      å
                                            ⇒      f (t) dt ≤    1 +     f (t) dt ,
                                                 0           2        0
                  iar prin induct , ie obt , inem c˘a
                                       x           1               2 x
                                     Z                Ç          Z  n        å
                                                         n
                                        f (t) dt ≤     2 − 1 +        f (t) dt , (∀) n ≥ 1.
                                      0            2 n            0
                  Acum, pentru a > 1, putem scrie:
                               Z  a          Z  1          Z  a           Z  1          Z  a  1
                                  f (x) dx =    f (x) dx +    f (x) dx ≤     f (x) dx +       dx
                                0             0             1              0             1 x 2
                                          Z  1               1        Z  1
                                        =     f (x) dx + 1 −   < 1 +     f (x) dx := A.
                                            0                a         0
                  ˆ
                  In continuare,
                                             x           1              2 x
                                           Z               Ç          Z  n         å
                                                              n
                                              f (t) dt ≤     2 − 1 +        f (t) dt
                                            0            2 n           0
                                               n
                                         A + 2 − 1                       Z  1
                                       ≤              → 1, (∀) x > 0 ⇒      f (t) dt ≤ 1.
                                              2 n    n→∞                  0
   30   31   32   33   34   35   36   37   38   39   40