Page 36 - MATINF Nr. 1
P. 36

36                                                                                   F. St˘anescu



               6. Fie a, b ∈ R cu a > 0, 2a + 3b = 6 s , i f : [0, 1] → R descresc˘atoare. S˘a se arate c˘a:
                    1  f (x) dx ≥  1  2
                  R             R
                   0             0  (ax + bx) f (x) dx.
                                                           2
                  Solut ,ie. Not˘am g : [0, 1] → R, g(x) = ax + bx − 1. Ecuat , ia g (x) = 0 are o unic˘a solut , ie α
                  in intervalul (0, 1).
                  Rezult˘a g (x) ≤ 0, (∀) x ∈ [0, α] s , i g (x) ≥ 0, (∀) x ∈ [α, 1] . Cum f este descresc˘atoare,
                  obt , inem
                                            g (x) (f (x) − f (α)) ≤ 0, (∀) x ∈ [0, α]
                  s , i
                                            g (x) (f (α) − f (x)) ≥ 0, (∀) x ∈ [α, 1]
                                                                             1
                                                                           Z
                              ⇒ g (x) (f (x) − f (α)) ≤ 0, (∀) x ∈ [0, 1] ⇒   g (x) f (x) dx ≤ 0.
                                                                            0
               7. Dac˘a f : [0, 2π] → R este o funct , ie convex˘a s , i integrabil˘a, atunci are loc inegalitatea:

                                                    Z  2π
                                                        f (x) · cos xdx ≥ 0.
                                                     0

                  Solut ,ie. Putem scrie:

                                    2π                    π                  2π
                                  Z                     Z                  Z
                                       f (x) · cos xdx =   f (x) cos xdx +     f (x) cos xdx.
                                   0                     0                  π

                  Pentru ultima integral˘a f˘acˆand substitut , ia x = t + π, rezult˘a c˘a

                                            2π                    π
                                          Z                     Z
                                              f (x) cos xdx = −     f (x + π) cos xdx,
                                           π                     0
                  de unde
                                     Z  2π                 Z  π
                                         f (x) · cos xdx =    cos x (f (x) − f (x + π)) dx.
                                      0                     0
                  Acum, pentru x, y ∈ [0, π] , x < y, deci x < y < x + π < y + π, obt , inem c˘a

                                             f (y + π) − f (x + π)    f (y) − f (x)
                                                                   ≥
                                                     y − x               y − x


                                           ⇒ f (y) − f (y + π) ≤ f (x) − f (x + π) .
                  Astfel, funct , ia f (x) − f (x + π) , x ∈ [0, π] este descresc˘atoare.
                  ˆ
                  In final, cum s , i cos x este descresc˘atoare pe [0, π], aplicˆand inegalitatea lui Cebˆas , ev, avem

                                       2π                    π
                                     Z                     Z
                                          f (x) · cos xdx =   cos x (f (x) − f (x + π)) dx
                                      0                     0
                                        1  ÅZ  π      ã ÅZ  π                       ã
                                     ≥         cos xdx ·      (f (x) − f (x + π)) dx = 0.
                                        π   0              0
                                                                                     0
               8. Presupunem c˘a f : [0, 1] → R este o funct , ie derivabil˘a, cu f continu˘a, astfel ˆıncˆat
                  R  1
                   0  f (x) dx = 0. Pentru α ∈ (0, 1) demonstrat , i inegalitatea:
                                                Z  α           1
                                                                          0
                                                   f (x) dx ≤
                                                                 · max |f (x)| .
                                                               8
                                                 0                x∈[0,1]
   31   32   33   34   35   36   37   38   39   40   41