Page 34 - MATINF Nr. 1
P. 34

34                                                                                   F. St˘anescu



                Aplicat , ii


               1. Se consider˘a f : [a, b] → R o funct , ie derivabil˘a, cu derivata continu˘a, astfel ˆıncˆat f (a) =
                  f (b) = 0. Ar˘atat , i c˘a are loc inegalitatea:


                                                              1  Z  b
                                                                      0
                                                 max f (t) ≤    ·   |f (x)| dx.
                                                a≤t≤b         2   a

                                           R  x  0                   b  0                       R  x  0
                                                                   R
                  Solut ,ie. Avem |f (x)| = |  a  f (t) dt| s , i |f (x)| =    x  f (t) dt  , deci 2 |f (x)| = |  a  f (t) dt| +


                    b  f (t) dt  ≤ R  x  0     R  b  0       R  b  |f (x)| dx, (∀) x ∈ [a, b] . Astfel, max f (t) ≤
                                                                  0
                       0
                   R

                    x            a              x             a
                                   |f (t)| dt +  |f (t)| dt =
                                                                                                a≤t≤b
                          0
                  1  ·  R  b  |f (x)| dx.
                  2   a
                                                                   0
               2. Dac˘a f : [a, b] → R este o funct , ie derivabil˘a cu f continu˘a pe [a, b], demonstrat , i inegalita-
                  tea:

                                   1    Z  b              1    Z  b           b − a
                                                                                             0
                            0 ≤        ·   |f (x)| dx −       ·   f (x) dx  ≤       · max |f (x)| .

                                 b − a   a               b − a  a               3    a≤x≤b

                                   b  f (x) dx  ≤  R  b  |f (x)| dx, deci 0 ≤  1  ·  R  b    1  ·  R  b
                                  R

                  Solut ,ie. Avem    a           a                     b−a   a  |f (x)| dx −   b−a  a  f (x) dx .
                  Mai departe, vom calcula:
                                       b             x                    b
                                     Z             Z                    Z
                                                                                    0
                                                               0
                                        f (x) dx +    (t − a) f (t) dt −   (b − t) f (x) dt
                                      a             a                    x
                       b                             x                            b
                     Z                             Z                            Z
                   =     f (x) dx + (x − a) f (x) −   f (x) dx + (b − x) f (x) −    f (x) dx = (b − a) f (x) ,
                      a                             a                             x
                  de unde obt , inem c˘a

                                             Z  b          Z  x                 Z  b

                                                f (x) dx +     (t − a) f (t) dt −
                                                                       0                    0
                            |(b − a) f (x)| =                                       (b − t) f (x) dt
                                                a           a                    x

                                       b             x                      b
                                     Z             Z                      Z

                                        f (x) dx  +    (t − a) |f (t)| dt +  (b − t) |f (t)| dt.
                                                                0                     0
                                  ≤
                                      a             a                      x

                  Rezult˘a

                                                  Z  b                     Z  b
                                          (b − a) ·  |f (x)| dx − (b − a)      f (x) dx
                                                   a                        a
                                   Z  b  ÅZ  x             ã      Z  b  Ç Z  b            å
                                                                                   0
                                                    0
                                ≤          (t − a) |f (t)| dt dx +        (b − t) |f (t)| dt dx
                                    a    a                         a    x
                                                            3
                                                     (b − a)
                                                                       0
                                                  ≤           · max |f (x)| ,
                                                         3     a≤x≤b
                  ceea ce ˆıncheie demonstrat , ia.
               3. Fie f : [a, b] → R derivabil˘a cu derivata continu˘a. S˘a se arate c˘a:
                                    Z a+b
                                                                            2
                                       2
                                                    Z  b             (b − a)
                                         f (x) dx −      f (x) dx  ≤         · max |f (x)| .
                                                                                      0

                                     a
                                                     a+b                4      x∈[0,1]
                                                      2
                                    R  b           R  b      0                           R  b        0
                  Solut ,ie. Avem:     f (x) dx =    (x − a) f (x) dx = (b − a) f (b) −     (x − a) f (x) dx,
                                     a              a                                     a
                                                                              R  b        0            0
                  iar din teorema de medie exist˘a c 1 ∈ (a, b) astfel ˆıncˆat  a  (x − a) f (x) dx = f (c 1 ) ·
                  R  b              0     (b−a) 2         R  b                           0    (b−a) 2  ˆ
                   a  (x − a) dx = f (c 1 )  2  , de unde  a  f (x) dx = (b − a) f (b) − f (c 1 )  2  . In mod
                                                        R b                          0     (b−a) 2
                  analog, exist˘a c 2 ∈ (a, b) astfel ˆıncˆat  f (x) dx =(b − a) f (a) + f (c 2 )  .
                                                         a                                   2
   29   30   31   32   33   34   35   36   37   38   39