Page 18 - MATINF Nr. 9-10
P. 18

18                                                                                     P.H. Hoai



                Case A. −2 ≤ k ≤ 1. We assume that c = min {a, b, c}, so c ∈ (0; 1], and hence
             √
            ( c − 1) (k − 1) ≥ 0.
                                                                                         √
                Case B. k ≥ 1. We assume that c = max {a, b, c}, so c ≥ 1, and hence ( c − 1) (k − 1) ≥ 0.
                Through the above two cases, we see that (6) is true.

                We back to the given problem. Using (6) we have

                                                       Å         ã               Å        ã
                              2                        1      √                     2
                                                2
                                          3
                                                                                                 3
                                                                         2
                                    2
             LHS − RHS ≥        + c + k + 3k − 2          + 2 c − 3k + 3k          √ + c − 3k + 9k + 3,
                              c                          c                           c
            and hence
                                                √   2      √   2              √
                                           (1 −   c) (k −    c) [c + 2 (k + 1)  c + k + 3]
                          LHS − RHS ≥                                                     ≥ 0,
                                                                  c
            since c > 0 and k ≥ −2.
   13   14   15   16   17   18   19   20   21   22   23