Page 84 - MATINF Nr. 6
P. 84

˘
            84                                        PROBLEME DE MATEMATICA PENTRU CONCURSURI






                                                    Clasa a XI-a



                                                       „                      Ž
                                                           2020    a    −ab
            M 111. Se consider˘a matricea X(a, b) =         0    2019     b     , unde a, b ∈ C.
                                                            0      0    2020

                                                                                        „           Ž
                                                                                           1 x y
                a) Ar˘atat ,i c˘a exist˘a o infinitate de matrice P ∈ M 3 (C) de forma P =  0 1 z       astfel
                                                                                           0 0 1
            ˆıncˆat  P · X(a, b) = X(0, 0) · P.

                                      n             ∗
                b) Calculat ,i (X(a, b)) , unde n ∈ N .
                                                      Stelian Corneliu Andronescu s , i Costel B˘alc˘au, Pites , ti


                                                              „                                         Ž
                                                                  2020 a + 2019x −ab + bx + 2020y
            Solut ,ie.  a) Avem P · X(a, b) = X(0, 0) · P ⇔        0       2019          b + 2020z         =
                                                                   0         0             2020
            „                        Ž                         „             Ž
                2020 2020x 2020y             x = a                 1 a    y
                  0    2019   2019z      ⇔     z = −b ⇔ P =         0 1 −b      , cu y ∈ C.
                  0      0     2020           y ∈ C                0 0    1

                                                                               „            Ž
                                                                                  1 a    0
                b) Conform a) avem X(a, b) = P      −1  · X(0, 0) · P, cu P =     0 1 −b       . Rezult˘a c˘a
                                                                                  0 0    1
                                              „                Ž  „       n                 Ž  „            Ž
                                                 1 −a −ab            2020      0       0          1 a    0
                     n     −1          n                                          n
            (X(a, b)) = P    ·(X(0, 0)) ·P =     0    1    b     ·      0    2019      0      ·   0 1 −b
                                                 0    0    1            0      0     2020 n       0 0    1
               „       n         n        n             n        n  Ž
                  2020    a (2020 − 2019 ) −ab (2020 − 2019 )
                                                               n
                                                       n
            =        0          2019 n          b (2020 − 2019 )       .
                     0            0                   2020 n
            M 112. Fie matricele A, B ∈ M 3 (C) astfel ˆıncˆat AB = BA, det(A + B) = det A + det B s , i
            det(A − B) = det A − det B. Ar˘atat ,i c˘a:

                                                    3
                         3
                               3
                a) det (A + B ) = (det A + det B) ;
                                                    3
                         3
                               3
                b) det (A − B ) = (det A − det B) .
                                                                                        Daniel Jinga, Pites , ti
                                                                                                          2
            Solut ,ie (Daniel V˘acaru, Pites , ti). Fie polinomul P (x) = det (A + xB) = det A + ax + bx +
                     3
            (det B)x . Observ˘am c˘a P (1) = det (A + B) = det A + a + b + det B, deci a + b = 0, iar
            P (−1) = det (A − B) = det A − a + b − det B, deci a − b = 0. Rezult˘a c˘a a = b = 0, deci
                                               3
            P (x) = det (A + xB) = det A + x det B.
                                          3
                a) Consider˘am ecuat , ia x − 1 = 0, cu r˘ad˘acinile x 1 = 1, x 2 s , i x 3 . Folosind Formulele
            lui Vi`ete x 1 + x 2 + x 3 = 0, x 1 x 2 + x 2 x 3 + x 3 x 1 = 0, x 1 x 2 x 3 = 1 s , i ipoteza AB = BA,
                                                        3
                                                                            2
                                                                                                          2
            avem (A + x 1 B) (A + x 2 B) (A + x 3 B) = A +(x 1 + x 2 + x 3 ) A B +(x 1 x 2 + x 2 x 3 + x 3 x 1 ) AB +
   79   80   81   82   83   84   85   86   87   88   89