Page 83 - MATINF Nr. 6
P. 83

˘
            PROBLEME DE MATEMATICA PENTRU CONCURSURI                                                       83


            M 110. Fie k ≥ −1 un num˘ar real fixat s , i fie S mult ,imea triunghiurilor neobtuzunghice.
            Determinat ,i

                               n
                                                                                            2
                                                            €p          p          p       Š o
                           min k(ctg A + ctg B + ctg C) +       ctg A +    ctg B +   ctg C
            atunci cˆand 4ABC parcurge mult ,imea S.


                                                            Leonard Mihai Giugiuc, Drobeta Turnu Severin

            Solut ,ie. Definim


                                                                                               Š 2
                                                                 €p          p          p
                      f k (A, B, C) = k(ctg A + ctg B + ctg C) +     ctg A +   ctg B +    ctg C   .
                        π π π                          π π π
                                          √
            Avem f k     , ,      = (k + 3) 3 s , i f k  , ,     = 2k + 4. Conform problemei M 85 din
                        3 3 3                          4 4 2
            MATINF 3/2019, rezolvat˘a ˆın MATINF 5/2020, avem
                                                           π π π                π π π

                               f   √  (A, B, C) ≥ f    √     , ,     = f   √     , ,     .
                                1+2 3               1+2 3               1+2 3
                                                           3 3 3                4 4 2
            ˆ
            In virtutea celor de mai sus, clam˘am urm˘atoarea:
                                                                                                     √
                                               √               §
                                       ¦                  ©        2k + 4,    dac˘a − 1 ≤ k ≤ 1 + 2 3,
               min f k (A, B, C) = min (k + 3) 3, 2k + 4 =              √                    √
                                                                 (k + 3) 3, dac˘a k ≥ 1 + 2 3.
                                           √
                Cazul 1. −1 ≤ k ≤ 1 + 2 3. Din solut , ia problemei M 85, deducem c˘a este suficient s˘a
            ar˘at˘am c˘a


                                                                p
                                                    2
                                   2
                              2
                         2
                                                                           2 2
                      k(x + y + z ) + (x + y + z) ≥ (2k + 4)      x y + y z + z x , ∀x, y, z ≥ 0,
                                                                                  2 2
                                                                    2 2
            fiind chiar suficient s˘a consider˘am urm˘atoarele dou˘a cazuri:
                                                                                          2
                (i) x ∈ [0, 1] s , i y = z = 1. Problema se reduce la a ar˘ata c˘a (k + 1)x + 4x + 2k + 4 ≥
                     √
                                                       2 3
                                                                              2
                                                                       2
                         2
            (2k + 4) 2x + 1, echivalent cu x [(k + 1) x + 8(k + 1)x − 4(k + 5k + 2)x + 16(k + 2)] ≥ 0,
                                            2
                                                                         2
            care se rescrie x {(k + 1)(x − 1) [(k + 1)x + 2(k + 5)] + (−k + 2k + 11)(x + 2)} ≥ 0, adev˘arat.
                                                                           2
                                                                      2
                (ii) z = 0. Problema se reduce la a ar˘ata c˘a (k + 1)(x + y ) ≥ 2(k + 1)xy, evident adev˘arat.
                                   √
                Cazul 2. k ≥ 1 + 2 3. Tot din solut , ia problemei M 85, deducem c˘a este suficient s˘a ar˘at˘am
            c˘a                                              √
                                  2
                             2
                       2
                                                  2
                                                                      2 2
                                                                                    2 2
                                                                             2 2
                    k(x + y + z ) + (x + y + z) ≥ (k + 3) 3 ·     p x y + y z + z x , ∀x, y, z ≥ 0,
            fiind chiar suficient s˘a consider˘am din nou cazurile:
                                                                                          2
                (i) x ∈ [0, 1] s , i y = z = 1. Problema se reduce la a ar˘ata c˘a (k + 1)x + 4x + 2k + 4 ≥
                   √
                        √
                                                        2
                                                                                            2
                                                                 2 2
                            2
            (k + 3) 3 ·   2x + 1, echivalent cu (x − 1) [(k + 1) x + 2(k + 1)(k + 5)x + k − 2k − 11] ≥ 0,
            adev˘arat.
                                                           √
                (ii) z = 0. Deoarece 2k + 4 ≥ (k + 3) 3, problema se reduce din nou la a ar˘ata c˘a
                           2
                     2
            (k + 1)(x + y ) ≥ 2(k + 1)xy, adev˘arat.
                Demonstrat , ia este astfel ˆıncheiat˘a.
   78   79   80   81   82   83   84   85   86   87   88