Page 15 - MATINF Nr. 9-10
P. 15

Three beautiful-difficult inequality problems                                                    15



            Solution. Let
                                                        2
                                                             2
                                                                  2
                                   p = a + b + c, x = a + b + c , y = ab + bc + ca,
                                          x
                                      t =   , r = abc, M = (a + b) (b + c) (c + a) .
                                          y
            By Schur’s Inequality we have

                                                                    P
                               a              4abc                    a (a − b) (a − c)
                         X
                                   +                       − 2 =                         ≥ 0, so
                             b + c   (a + b) (b + c) (c + a)      (a + b) (b + c) (c + a)
                                                  8abc                X    2a
                                                                ≥ 4 −          .                          (4)
                                         (a + b) (b + c) (c + a)          b + c
            Also,

                                  2
                                                   2
                             2
                                              2
               X     a      a + b + c  2   Å  a + b + c 2    ã           abc                        r
                         =               +                + 3                         = t + (t + 3)   .   (5)
                   b + c    ab + bc + ca     ab + bc + ca       (a + b) (b + c) (c + a)             M
            Let
                                       2a      2b       2c                8abc
                                 u =       +        +       , v =                       .
                                      b + c   c + a   a + b       (a + b) (b + c) (c + a)
                By (4) we have v ≥ max {0, 4 − u}.

                                    4u − 3v
                By (5) we have t =          .
                                      8 + v
                Let
                                                                                      2
                                              1       X     Å        bc  ã 2  (k − 1) abc
                               LHS = √                        ka +          +
                                         ab + bc + ca               b + c         b + c

            and
                                                    
                                                      Å       ã 2          2
                                                             1      (k − 2) v
                                           RHS =       2k +      +            .
                                                             2          2
                By Minkowski’s Inequality we have

             LHS ≥
                            s
                                                                         2
                    1         ï                X    bc  ò 2       (k − 1) abc      h X »                 i 2
             √                  k (a + b + c) +            +                               (a + b) (a + c) .
               ab + bc + ca                        b + c     (a + b) (b + c) (c + a)

            But
                                                 Å          ã
                                 X    bc     X          bc
                                           =       a +        − (a + b + c)
                                     b + c             b + c
                                             ab + bc + ca  X  a + b + c
                                           =                            − (a + b + c)
                                               a + b + c        b + c
                                                          Å              ã
                                             ab + bc + ca       X     a
                                           =                3 +            − (a + b + c)
                                               a + b + c            b + c
                                             y  Å    X     a  ã
                                           =     3 +            − p,
                                             p           b + c
   10   11   12   13   14   15   16   17   18   19   20