Page 14 - MATINF Nr. 9-10
P. 14

14                                                                                     P.H. Hoai



                                                                    2
                                                                              2
                                                                         2
                                         2 |xy| + 2 |yz| + 2 |zx| ≥ x + y + z .
                                                                     x + y
            By x + y + z + xyz = 0, there exist xy ≥ 0 and z = −           .
                                                                    1 + xy
                We need to prove
                                                                       2
                                                                  2
                                                                            2
                                        2|xy| + 2|yz| + 2|zx| ≥ x + y + z , i.e.
                                            2 (x + y) 2            Å  x + y  ã 2
                                                           2
                                                                2
                                     2xy +             ≥ x + y +               , i.e.
                                              1 + xy                 1 + xy
                                             4xy         2               1
                                                    +         ≥ 1 +           .
                                           (x + y) 2  1 + xy        (1 + xy) 2
                                                    2
                                                                 2
                       2
                                2
            But (1 − x ) (1 − y ) ≥ 0, then (x + y) ≤ (1 + xy) , and hence
                                 4xy         2          4xy         2               1
                                        +         ≥            +         ≥ 1 +            ,
                               (x + y) 2   1 + xy    (1 + xy) 2   1 + xy        (1 + xy) 2
            since 0 ≤ xy ≤ 4.

                            Å      ã 2   Å      ã 2  Å       ã 2
                              b − c       c − a        a − b              16abc
                                      +            +            +                       ≥ 2.              (3)
                              b + c        c + a       a + b      (a + b) (b + c) (c + a)
            This inequality follows immediately from the identity
                                                                                      2
                                                                                                 2
            Å      ã 2  Å       ã 2  Å      ã 2                               Å      ã Å       ã Å       ã 2
              b − c       c − a        a − b             16abc                  b − c     c − a     a − b
                      +            +           +                        = 2 +                               .
              b + c       c + a        a + b     (a + b) (b + c) (c + a)        b + c     c + a     a + b
                We back to the given problem. Using Minkowski’s Inequality, (1), (2) and (3), we have

                                                               
                   8a     Å b − c  ã 2     8b    Å c − a  ã 2     8c     Å a − b  ã 2
                        +           +          +            +          +
                  b + c     b + c        c + a     c + a         a + b     a + b
                   Ã
                                                      ! 2   "                                          # 2
                         …                    …                 Å      ã 2    Å       ã 2    Å       ã 2
                             a          b          c             b − c          c − a          a − b
                ≥    8           +          +            +                +              +
                           b + c      c + a      a + b           b + c          c + a          a + b
                   s
                                                        ñ                                   ô
                                     4abc                  b − c        c − a       a − b
                       Å                          ã       Å      ã 2  Å      ã 2   Å      ã 2
                ≥    8 4 +                          + 2             +           +
                             (a + b) (b + c) (c + a)       b + c        c + a       a + b
                   s
                            ñ                                                            ô
                             Å      ã 2   Å      ã 2  Å      ã 2
                               b − c       c − a        a − b              16abc
                =    32 + 2            +            +            +                         ≥ 6.
                               b + c       c + a        a + b      (a + b) (b + c) (c + a)

            Problem 2. Let a, b, c three non-negative real numbers such that ab + bc + ca > 0, and let
                 1
            k ≥ . Prove that:
                 4
                                                                          
                                                                              2
                                k a        bc         k b        ca         k c        ab
                                                        2
                                  2
                                     +          +          +          +          +
                                b + c   (b + c) 2    c + a    (c + a) 2    a + b    (a + b) 2
                                          s
                                             Å       ã 2                2
                                                    1          4 (k − 2) abc
                                        ≥     2k +      +                        .
                                                    2      (a + b) (b + c) (c + a)
   9   10   11   12   13   14   15   16   17   18   19