Page 17 - MATINF Nr. 9-10
P. 17

Three beautiful-difficult inequality problems                                                    17



                Case B. 3 ≤ u ≤ 4, so

                                       4 (u + 6) 3                 4 (4 + 6) 3     Å  1     ã    1
                                                        2
                           0
                  0
                 f (v) ≥ f (4 − u) =            2  + 2 k − 2 ≥                2  + 2    − 2 =       > 0,
                                      (5u + 12)                  (5 × 4 + 12)        16          32
            and hence
                                                       2
                                       (12 − u) (u + 6)
                                                                                                 2
                                                                             2
                                                               2
                  f (v) ≥ f (4 − u) =                   + 2 k − 1 u + 2 k − 2 (4 − u) − 8k − 17
                                           5u + 12
                                       5 (4 − u) (u − 3) 2
                                    =                    ≥ 0.
                                            5u + 12
                The proof is complete.

            Remark 1. The above result can be rewritten in the following form

                                                                          
                                                                                       2
                                                                 2
                                           2
                                 a        k bc         b        k ca         c        k ab
                                     +          +          +          +          +
                                b + c   (b + c) 2    c + a    (c + a) 2    a + b    (a + b) 2
                                           s
                                               k              4 (2k − 1) abc
                                             Å       ã 2                2
                                        ≥        + 2    +                       ,
                                               2          (a + b) (b + c) (c + a)
            where 0 ≤ k ≤ 4.
            Problem 3. Let a, b, c three non-negative real numbers such that abc = 1, and let k ≥ −2.
            Prove that:

                                   3
                                         2
                                                                    2

                        2
                   2
                             2

                                                                                            3
                  a + b + c + k + 3k − 2 (ab + bc + ca) ≥ 3k + 3k (a + b + c) + 3k − 9k − 3.
            Solution. We first prove the following inequality
                                                          1     1  ã
                                                          Å
                                             3
                                  2
                                                   2
                                                                          2
                                       2
                                 a + b + k + 3k − 2           +     − 3k + 3k (a + b)
                                                            a   b
                                                             2                    Ä √ ä
                                                      2
                                                3
                                                                        2
                                     ≥ 2ab + k + 3k − 2 √        . − 3k + 3k     2 ab ,                   (6)
                                                               ab
                                                       √
                                                      Ä      √ ä 2
                                                         a −   b                 √
                                  2     3      2                         2       Ä      √ ä 2
                       i.e. (a − b) + k + 3k − 2                   − 3k + 3k        a −   b   ≥ 0,
                                                           ab
                                 √          ï  √               3     2                  ò
                               Ä       √ ä 2  Ä      √ ä 2   k + 3k − 2
                                                                                 2
                           i.e.    a −   b       a +   b   +               − 3k + 3k      ≥ 0.
                                                                  ab
            Indeed, we have
                      √               3     2         √       3      2
                     Ä      √ ä 2   k + 3k − 2               k + 3k − 2                          4
                                                                                      2
                                                                               3
                        a +   b   +               ≥ 4 ab +                 = k + 3k − 2 c + √ ,
                                          ab                      ab                              c
            and hence we need to prove that
                                                          4
                                              2
                                        3
                                                                   2

                                       k + 3k − 2 c + √ − 3k + 3k ≥ 0, i.e.
                                                           c
                                                                            √        √
                         √                                         √     2 ( c + 2) ( c − 1) 2
                      3    c − 1 (k − 1) (k + 2) + (k + 2) (k − 1) 2  c +         √            ≥ 0.
                                                                                    c
   12   13   14   15   16   17   18   19   20   21   22