Page 5 - MATINF Nr. 4
P. 5

˘
            ARTICOLE SI NOTE DE MATEMATICA
                                  ,





            ˆ
            In leg˘atur˘a cu Problema 4093 din Crux
            Mathematicorum



            Marin Chirciu      1



            Aplicat , ia 1 (Problema 4093 din Crux Mathematicorum, Vol. 41, No. 10 (Dec.2015) - propus˘a
            de Dragoljub Milosevi´c). Let ABC be an arbitrary triangle. Let r and R be the inradius and
            the circumradius of ABC, respectively. Let m a be the length of the median from vertex A to
            side BC and let wa be the length of the internal bisector of ^A to side BC. Define m b ; m c ; w b
            and w c similarly. Prove that

                                           a 2      b 2      c 2      R     ‹
                                                +       +        ≤ 4      − 1 .
                                         m a w a  m b w b  m c w c      r
                                                                                 Dragoljub Milosevi´c, Serbia

            Solut ,ie. Folosim inegalitatea lui L. Panaitopol m a l a ≥ p (p − a). (Notat , ie w a = l a ).

                           X    a 2    X      a 2      4 (R − r)                    X     a 2    4p (R − r)
                Obt , inem:         ≤                =           , care rezult˘a din:         =             ,
                               m a l a     p (p − a)       r                            p − a         r
                                         X    2
                                                                    2
                            X    a 2         a (p − b) (p − c)   4p r (R − r)    4 (R − r) Q
                                                                                                           2
            adev˘arat˘a din           =       Q               =                =           ,   (p − a) = r p
                                                                       2
                                p − a            (p − a)              r p            r
               X
                    2
                                         2
            s , i  a (p − b) (p − c) = 4p r (R − r) . Egalitatea are loc dac˘a s , i numai dac˘a triunghiul este
            echilateral.
                S˘a determin˘am o inegalitate de semn contrar.
                           ˆ
            Aplicat , ia 2. In 4ABC
                                             a 2      b 2      c 2     4r  ‹ 2
                                                  +        +       ≥         .
                                           m a w a  m b w b  m c w c    R
                                                                                      Marin Chirciu, Pites , ti

                                                                                             X
                                                                                                  2
                                                                                                         2
                                                                   2
            Solut ,ie. Folosim inegalitatea lui Bergstr¨om m a l a ≤ m , inegalitatea lui Leibniz  a ≤ 9R s , i
                                                                   a
                                                2
                                         2
            inegalitatea lui Mitrinovi´c p ≥ 27r . Obt , inem:
                          X     a 2    X   a 2     (a + b + c) 2          4p 2          16p 2
                                    ≥          ≥                 =                  =   X
                                                   2
                                                         2
                                                                        2
                                                                             2
                                                                                 2
                              m a l a      m 2   m + m + m     2    3  (a + b + c )    3    a 2
                                             a     a     b     c    4
                                             16p 2    16p 2    16 · 27r 2  16r 2
                                         ≥         =        ≥           =       .
                                            3 · 9R 2  27R 2      27R 2      R 2
            Egalitatea are loc dac˘a s , i numai dac˘a triunghiul este echilateral.
                Se poate scrie dubla inegalitate:
               1
                Profesor, Colegiul Nat , ional ,,Zinca Golescu”, Pites , ti, marin.chirciu@yahoo.com
                                                            5
   1   2   3   4   5   6   7   8   9   10