Page 23 - MATINF Nr.2
P. 23

On a Crux open problem                                                                         23



                                                             m
                                                     2 − p
                                            ñ      Ç       å ô
                                                                    m
                                                                                            m
                Suffice it to prove that p 2m  1 + 2              ≥ 4 , ∀p ∈ [1, 2] (because 4 ≤ 3).
                                                    2p − 1
                                                                                  m
                                                                           2 − x
                                                                 ñ      Ç        å ô
                Define the function g : [1, 2] → R as g (x) = x 2m  1 + 2             , ∀x ∈ [1, 2].
                                                                          2x − 1
                Clearly, g is continuous. Moreover, it is differentiable on [1, 2).
                                            Ç        å m−1  "Ç      å 1−m       2         #
                                               2 − x          2 − x          4x − 7x + 4
                           0
                We have: g (x) = 2mx   2m−1                               −            2   , ∀x ∈ [1, 2).
                                              2x − 1          2x − 1           (2x − 1)
                So for finding the minimum of g on the interval [1, 2], suffice it to determine the sign of the
                        Ç       å 1−m      2
                          2 − x          4x − 7x + 4
            expression                −                on the interval [1, 2).
                         2x − 1            (2x − 1) 2
                                                                                               2
                                                               y + 1       Ç  2 − x  å 1−m   4x − 7x + 4
                Denote 2x − 1 = y. Then y ∈ [1, 3), x =               and                 −                =
                                                                 2           2x − 1           (2x − 1) 2
            Ç       å 1−m      2
              3 − y         2y − 3y + 3
                          −              .
                2y               2y 2
                                                                    Ç      å 1−m      2
                                                                     3 − y          2y − 3y + 3
                Define now the function h : [1, 3) → R as h (y) =                 −              , ∀y ∈ [1, 3).
                                                                       2y               2y 2
                                3  ñ           Ç  2y  å m        2  ô
                        0
            We have: h (y) =        − (1 − m)             − 1 +    , ∀y ∈ [1, 3).
                               2y 2              3 − y           y
                                  Ç      å m
                                     2y
                But the function             is strictly increasing on [1, 3) (as composite of increasing) and
                                    3 − y
                          2
            the function    is strictly decreasing on [1, 3) and since 1 − m > 0, we deduce that the function
                          y
                               Ç      å m
                                  2y             2
            ϕ (y) = − (1 − m)             − 1 +    is strictly decreasing on [1, 3).
                                 3 − y           y
                On the other hand, ϕ (1) = m > 0 and ϕ (3 − 0) = −∞ < 0, ∃!y 0 ∈ (1, 3) such that
            ϕ (y 0 ) = 0.

                                                                                  0
                Further, ϕ (y) > 0 ∀y ∈ [1, y 0 ) and ϕ (y) < 0 ∀y ∈ (y 0 , 3) ⇒ h (y) > 0 ∀y ∈ [1, y 0 ) and
              0
            h (y) < 0 ∀y ∈ (y 0 , 3).
                                                 2
                But h (1) = 0 and h (3 − 0) = − < 0. Since h is strictly increasing on [1, y 0 ] and strictly
                                                 3
            decreasing on [y 0 , 3), then ∃!y 1 ∈ (y 0 , 3) such that h (y 1 ) = 0.

                                                                                                    0
                                                                       0
                We deduce from here that for a certain x 0 ∈ (1, 2) g (x) > 0 ∀x ∈ (1, x 0 ) and g (x) < 0
            ∀x ∈ (x 0 , 2).
                                                                                           ln 3
                                                                                                       m
                                                             m
                In conclusion, min g = min {g (1) , g (2)} = 4 . Let’s remark that if m =      , then 4 = 3
                                                                                          2 ln 2
                                                                                         ln 3
            and equality holds at (1, 1, 1) or at (2, 2, 0) and permutations and if m <       , then equality
                                                                                        2 ln 2
            holds only at (2, 2, 0) and permutations.
                Case 2: p > 2.
                                       m
                                                        m
                                               m
                              m
                                                              m
                We have: (ab) + (bc) + (ca) ≥ (bc) > 4 .
                                         ln 3
                Let study now for m >         .
                                        2 ln 2
   18   19   20   21   22   23   24   25   26   27   28