Page 21 - MATINF Nr.2
P. 21

Dezvolt˘ari din RMM, Winter 2017                                                               21



            Solut , ie: Avem

                  x                   Ç   x           å              X x + y + z
            X          2       2   X                     2       2                 2        2  X    2       2
                     a (b + c) =              + 1 − 1 a (b + c) =                 a (b + c) −     a (b + c)
                y + z                   y + z                              y + z

                                   Bergstrom            ( P  a (b + c)) 2  X         2
                                                                             2
                                      ≥     (x + y + z)               −     a (b + c)
                                                            (y + z)
                                                          P
                                              2
                                                   2
                                          (2 (p + r + 4Rr))  2     î                        2  ó
                                                                     4
                                                                           2 2
                                                                                  2
                           = (x + y + z)                       − 2 p + 2p r + r (4R + r)
                                             2 (x + y + z)
                    1  Ä Ä              ää 2   î                          ó
                                2
                           2
                                                                                 2
                                                                                            2 2
                                                                                                      2
                                                               2
                                                 4
                                                        2 2
                  =    2 p + r + 4Rr       − 2 p + 2p r + r (4R + r)     2  = 16p Rr ≥ 32p r = 32S .
                    2
                Mai sus am folosit identit˘at , ile cunoscute ˆın triunghi:
                  a (b + c) = 2   bc = 2 (p + r + 4Rr) s , i  a (b + c) = 2 p + 2p r + r (4R + r) .
                P              P           2    2           P  2       2     î  4    2 2    2         2 ó
                Egalitatea are loc dac˘a s , i numai dac˘a triunghiul este echilateral.
            Bibliografie
            [1] D.M. B˘atinet , u-Giurgiu, M. Lukarevski, Romanian Mathematical Magazine, Founding Editor
                Daniel Sitaru, JP. 105, Winter Edition 2017.

            [2] O. Bottema, R.Z. Djordjevic, R.R. Janic, D.S. Mitrinovic, P.M. Vasic, Geometric Inequalities,
                The Netherlands, Groningen, 1969.

            [3] M. Chirciu, Inegalit˘at , i algebrice, de la init , iere la performant , ˘a, Editura Paralela 45, Pites , ti,
                2014.

            [4] M. Chirciu, Inegalit˘at , i cu laturi s , i raze ˆın triunghi, de la init , iere la performant , ˘a, Editura
                Paralela 45, Pites , ti, 2017.

            [5] G. Tsintsifas, Crux Mathematicorum, Nr. 11/1986.
   16   17   18   19   20   21   22   23   24   25   26