Page 66 - MATINF Nr. 1
P. 66
66 R.M. Georgescu
Round := proc (x, n) -> parse(sprintf("%.*f", n, x));
u := FindAngle(d||i||j, d||k||l);
a := 180*convert(u, float, 6)/(3.1415926535); (3)
b := Round(a, 4); c := trunc(b); d := trunc(60*(b-c));
e := Round(3600*(b-c-(1/60)*d), 0)
unde c reprezint˘a gradele, d minutele, iar e secundele corespunz˘atoare m˘asurii unghiului u dintre
dreptele d ij s , i d kl .
Pentru determinarea s , i afis , area perechilor de drepte paralele folosim secvent , a
print(Dreptele paralele sunt):
for i to n-1 do
for j from i+1 to n do
for k from i to n-1 do
for l from k+1 to n do
if (i <> k or j < l) then
if AreParallel(d||i||j, d||k||l) then (4)
print(d||i||j si d||k||l)
end if
end if
end do
end do
end do
end do;
Pentru determinarea s , i afis , area perechilor de drepte confundate folosim secvent , a
print(Dreptele confundate sunt):
for i to n-1 do
for j from i+1 to n do
for k from i to n-1 do
for l from k+1 to n do
if (i <> k or j < l) then
if (AreCollinear(P||i, P||j, P||k) and
AreCollinear(P||i, P||j, P||l)) then (5)
print(d||i||j si d||k||l)
end if
end if
end do
end do
end do
end do
Pentru determinarea s , i afis , area perechilor de drepte perpendiculare folosim secvent , a
print(Dreptele perpendiculare sunt):
for i to n-1 do
for j from i+1 to n do
for k from i to n-1 do
for l from k+1 to n do
if (i <> k or j < l) then
if ArePerpendicular(d||i||j, d||k||l) then (6)
print(d||i||j si d||k||l)
end if