Page 16 - MATINF Nr. 7
P. 16

16                                                                                D. M˘arghidanu


                                                                         ‹
                                                             1 1        1      A n (a 1 , a 2 , . . . , a n )
            Proof. The inequality A n (a 1 , a 2 , . . . , a n ) · A n  ,  , . . . ,  ≥           is even the
                                                            b 1 b 2    b n     A n (b 1 , b 2 , . . . , b n )
            left inequality in (1) - which (we have seen) occurs even without any specific ordering condition.
                Because the sequences (a 1 , a 2 , . . . , a n ) and (b 1 , b 2 , . . . , b n ) are similarly ordered, it follows
                                                                      ‹
                                                      
                                                         1 1        1
            that the sequences (a 1 , a 2 , . . . , a n ) and  ,  , . . . ,  are inversely ordered, so by using
                                                                                                        ‹
                                                        b 1 b 2    b n
                                                                                           1 1         1
            Chebishsev’s Inequality for this situation, we obtain A n (a 1 , a 2 , . . . , a n ) · A n  ,  , . . . ,  ≥
                               ‹                                                          b 1 b 2    b n
                 a 1 a 2     a n
            A n     ,   , . . . ,  .
                  b 1 b 2    b n
                                                                                              ‹
                                                    A n (a 1 , a 2 , . . . , a n )  a 1 a 2  a n
            Remark 3. In general, the numbers                          and A n      ,  , . . . ,  cannot be
                                                    A n (b 1 , b 2 , . . . , b n )  b 1 b 2  b n
            compared in the case of synchronous sequences. For example, for similarly ordered sequences
            (a 1 , a 2 , a 3 ) = (1, 2, 3) and (b 1 , b 2 , b 3 ) = (2, 3, 4), we will have
                                                                    ‹               ‹
                       A 3 (a 1 , a 2 , a 3 )  2            a 1 a 2 a 3        1 2 3
                                     =    = 0,666... > A 3    ,   ,     = A 3   , ,     = 0,638...,
                       A 3 (b 1 , b 2 , b 3 )  3            b 1 b 2 b 3        2 3 4

            while for similarly ordered sequences (a 1 , a 2 , a 3 ) = (1, 1, 2) and (b 1 , b 2 , b 3 ) = (1, 2, 2), we will
            have
                                                          ‹               ‹             ‹
                 A 3 (a 1 , a 2 , a 3 )  4        a 1 a 2 a 3        1 1 2              1
                               =    = 0,8 < A 3     ,   ,     = A 3    , ,    = A 3 1, , 1 = 0,833....
                  A 3 (b 1 , b 2 , b 3 )  5       b 1 b 2 b 3        1 2 2              2


                If we explicitly express the means in relation (1) and multiply everywhere by n, we obtain:

            Corollary 1. If a i ≥ 0, b i > 0, ∀ i = 1, n are such that the sequences (a 1 , a 2 , . . . , a n ) and
            (b 1 , b 2 , . . . , b n ) are asynchronous, then
                                                                                             ‹
                          a 1 + a 2 + . . . + a n  1                        1    1          1
                                             ≤     · (a 1 + a 2 + . . . + a n ) ·  +  + . . . +
                          b 1 + b 2 + . . . + b n  n 2                     b 1   b 2        b n
                                                                        ‹
                                                1     a 1  a 2        a n
                                              ≤    ·    +     + . . . +    .                              (8)
                                                n     b 1  b 2        b n

            Remark 4. The inequality between the extremes in (1), written in the form

                                      a 1   a 2        a n      a 1 + a 2 + . . . + a n
                                         +     + . . . +  ≥ n ·                   ,                       (9)
                                      b 1   b 2        b n      b 1 + b 2 + . . . + b n

            with (a 1 , a 2 , . . . , a n ) and (b 1 , b 2 , . . . , b n ) (a i ≥ 0, b i > 0, (∀)i = 1, n) asynchronous sequences,
            suggests the comparison with two other known inequalities for sums of fractions, namely
            Bergstr¨om’s Inequality and Radon’s Inequality (see [1], [2], [4], [5], [8]).


                We recall here these fractional inequalities:

            Proposition 6. a) (Bergstr¨om’s Inequality, 1952)
                        ?
                If n ∈ N , a i ≥ 0, b i > 0, ∀ i = 1, n, then

                                      a 2 1  a 2 2     a 2 n  (a 1 + a 2 + . . . + a n ) 2
                                         +     + . . . +  ≥                       ,
                                       b 1  b 2        b n     b 1 + b 2 + . . . + b n
   11   12   13   14   15   16   17   18   19   20   21