Page 94 - REVISTA MATINF Nr. 5
P. 94

˘
            94                                        PROBLEME DE MATEMATICA PENTRU CONCURSURI


            M 100. Fie f, g : [a, b] → R dou˘a funct ,ii derivabile cu derivatele continue astfel ˆıncˆat
              2
                      2
            f (x) + g (x) 6= 0, oricare ar fi x ∈ [a, b]. Demonstrat ,i c˘a
                                       s
                                                                     Ê
                                      b     0         0                  2       2
                                   Z            2          2
                                         (f (x)) + (g (x))             f (b) + g (b)
                                                            dx ≥ ln                  .
                                             2
                                                     2
                                                                                 2
                                                                         2
                                            f (x) + g (x)              f (a) + g (a)
                                    a
                                                                                  Cristinel Mortici, Viforˆata
            Solut ,ie (Alexandru Daniel Pˆırvuceanu, elev, Drobeta Turnu Severin; Leonard Giugiuc, Drobeta
            Turnu Severin). Conform Inegalit˘at ,ii Cauchy-Buniakowski-Schwarz avem
                       È
                                                                       0
                                                                                   0
                                       0
                            0
                                           2
                                                 2
                                                         2
                         [(f (x)) + (g (x)) ] · [f (x) + g (x)] ≥ f(x)f (x) + g(x)g (x), ∀x ∈ [a, b].
                                 2
            ˆ                                   2       2
            Imp˘art , ind aceast˘a inegalitate cu f (x) + g (x) > 0, ∀x ∈ [a, b], obt , inem
                    Ê
                                                               0
                                                   0
                         0
                                                                                    2
                                                                            2
                                   0
                       (f (x)) + (g (x)) 2   f(x)f (x) + g(x)g (x)    1 [f (x) + g (x)] 0
                             2
                                          ≥                        =    ·                , ∀x ∈ [a, b].
                                                                                    2
                                                                            2
                                                          2
                          2
                                                  2
                                   2
                         f (x) + g (x)           f (x) + g (x)        2   f (x) + g (x)
            Prin integrarea ultimei inegalit˘at , i pe [a, b] obt , inem
                           Ê                                                     Ê
                             (f (x)) + (g (x))        1                            f (b) + g (b)
                       Z  b     0   2     0    2                           b        2       2
                                                            2
                                                                     2
                                                dx ≥    ln(f (x) + g (x))   = ln                .
                                                                                     2
                                                                                             2
                                 2
                                f (x) + g (x)         2                            f (a) + g (a)
                                         2
                        a                                                 a
   89   90   91   92   93   94   95   96   97   98   99