Page 102 - MATINF Nr. 3
P. 102

˘
            102                                       PROBLEME DE MATEMATICA PENTRU CONCURSURI


                                                                               2
                                                                    2
                                                                         2
                                                                                               2
                                                                                          2
                                                                                                    2
            Solut ,ie.  Avem a 4 + a 5 + a 6 = a 1 + a 2 + a 3 − 3 s , i a + a + a = 9 − (a + a + a ). Cum
                                                                               6
                                                                                          1
                                                                         5
                                                                                               2
                                                                                                    3
                                                                    4
                                   2
                           2
                                                                                                    2
                                             2
                                                                            2
                                        2
                                                                                          2
                                                                                               2
            (a 4 + a 5 + a 6 ) ≤ 3 (a + a + a ), obt , inem (a 1 + a 2 + a 3 − 3) ≤ 27 − 3 (a + a + a ), adic˘a
                                   4    5    6                                            1    2    3
                2
                     2
                                                   2
                                                                                                2
                                                                                           2
                          2
                                                                                  2
                                                                                                     2
            3 (a + a + a ) + (a 1 + a 2 + a 3 − 3) ≤ 27. Dar (a 1 + a 2 + a 3 ) ≤ 3 (a + a + a ), deci
                          3
                     2
                1
                                                                                                     3
                                                                                           1
                                                                                                2
                                                                                               2
                          2
                                                2
            (a 1 + a 2 + a 3 ) + (a 1 + a 2 + a 3 − 3) ≤ 27. Notˆand a 1 + a 2 + a 3 = 3s obt , inem c˘a s − s − 1 ≤ 0,
                       √
                         5 + 1
            deci s ≤            = ϕ. Utilizˆand Inegalitatea mediilor, din a 1 + a 2 + a 3 = 3s rezult˘a c˘a
                          2
                                                                                   3                      1
                             3
                       3
            a 1 a 2 a 3 ≤ s ≤ ϕ , iar din a 4 +a 5 +a 6 = a 1 +a 2 +a 3 −3 ≤ 3(ϕ−1) =  rezult˘a c˘a a 4 a 5 a 6 ≤  .
                                                                                   ϕ                      ϕ 3
                                       1
                                    3
            Deci a 1 a 2 a 3 a 4 a 5 a 6 ≤ ϕ ·  = 1. Din demonstrat , ia de mai sus deducem c˘a a 1 a 2 a 3 a 4 a 5 a 6 = 1
                                       ϕ 3
                                                                      1
            dac˘a s , i numai dac˘a a 1 = a 2 = a 3 = ϕ s , i a 4 = a 5 = a 6 =  .
                                                                      ϕ
            M 24. Rezolvat ,i ˆın mult ,imea numerelor reale ecuat ,iile:
                                      2
                        2
                a) (4 cos x − 3)(4 cos 3x − 3) = 2 sin x;
                      3
                                                   3
                                         3
                               3
                   cos x + cos 5x + cos 9x + cos 13x       3
                b)                                      = .
                     cos x + cos 5x + cos 9x + cos 13x     4
                                                                                      Marin Chirciu, Pites , ti
            Solut ,ie.  a) x =  π  + kπ s , i x =  π  + kπ, k ∈ Z, nu sunt solut , ii ale ecuat , iei date. Utilizˆand
                               2               6
                                     cos 3x                                     cos 3x   cos 9x
                          2
            formula 4 cos x − 3 =          , pentru cos x 6= 0, ecuat , ia devine      ·        = 2 sin x, cu
                                     cos x                                       cos x   cos 3x
                 π
                               π
            x 6= +kπ s , i x 6= +kπ, k ∈ Z. Aceasta devine succesiv: cos 9x = sin 2x; cos 9x = cos   π  − 2x ;
                 2             6                                                                     2
                                                      (4k + 1)π           (4k − 1)π

            9x = ±    π  − 2x + 2kπ, k ∈ Z, deci x =             sau x =            , k ∈ Z.
                      2                                   22                  14
                     (4k + 1)π                   (4k + 1)π     π           (4k + 1)π     π
                x =             este solut , ie ⇔           6=    + nπ s , i          6=   + nπ, n ∈ Z ⇔
                         22                          22        2               22        6
                                           11                        11n + 5                 11(2m + 1) + 5
            4k + 1 6= 11 + 22n s , i 4k + 1 6=  + 22n (adev.) ⇔ k 6=         , n ∈ Z ⇔ k 6=                 ,
                                            3                           2                           2
            m ∈ Z ⇔ k 6= 11m + 8, m ∈ Z.
                             (4k − 1)π
                Analog, x =             este solut , ie dac˘a s , i numai dac˘a k 6= 7m + 2, m ∈ Z.
                                 14
                b) Condit , ia de existent , ˘a: cos x+cos 5x+cos 9x+cos 13x 6= 0 ⇔ 2 cos 7x(cos 6x+cos 2x) 6= 0
                                                 (2k + 1)π       (2k + 1)π         (2k + 1)π
            ⇔ 4 cos 7x cos 4x cos 2x 6= 0 ⇔ x 6=           , x 6=           s , i x 6=       , k ∈ Z.
                                                     4               8                 14
                               3 cos x + cos 3x                3   cos 3x + cos 15x + cos 27x + cos 39x    3
                         3
                Cum cos x =                   , ecuat , ia devine  +                                    = ,
                                      4                        4   4(cos x + cos 5x + cos 9x + cos 13x)    4
            adic˘a cos 3x + cos 15x + cos 27x + cos 39x = 0. Notˆand 3x = y, conform rezolv˘arii condit , iei de
                                       (2k + 1)π       (2k + 1)π           (2k + 1)π
            existent , ˘a obt , inem c˘a x =     , x =            sau x =            , k ∈ Z.
                                           12              24                  42
                       (2k + 1)π                    (2k + 1)π      (2n + 1)π    (2k + 1)π       (2n + 1)π
                x =               este solut , ie ⇔             6=            ,             6=             s , i
                          12                            12              4           12              8
             (2k + 1)π     (2n + 1)π
                        6=           , n ∈ Z ⇔ 2k + 1 6= 3(2n + 1), 2(2k + 1) 6= 3(2n + 1) (adev.) s , i
                12             14
            7(2k + 1) 6= 6(2n + 1) (adev.) ⇔ k 6= 3n + 1, n ∈ Z.
                             (2k + 1)π         (2k + 1)π
                Analog, x =             s , i x =        sunt solut , ii dac˘a s , i numai dac˘a k 6= 3n + 1, n ∈ Z.
                                 24               42
   97   98   99   100   101   102   103   104   105   106   107