Page 110 - MATINF Nr. 11-12
P. 110

˘
            110                                       PROBLEME DE MATEMATICA PENTRU CONCURSURI






                                                    Clasa a XI-a




            M 235. Fie A ∈ M 2 (C) astfel ˆıncˆat tr A 6= 0 s , i det A = 0. Consider˘am ecuat , ia matriceal˘a

                            3
                          X + AX(A + X) + X(A + X)A + (A + X)AX = O 2 , X ∈ M 2 (C).

                a) Ar˘atat , i c˘a dac˘ X este solut , ie a ecuat , iei, atunci AX = XA.
                                 a
                b) Demonstrat , i c˘a ecuat , ia are exact trei solut , ii.
                R˘amˆan valabile aceste afirmat , ii ˆın M 3 (C)?


                                                                    Sorin Ulmeanu s , i Costel B˘alc˘au, Pites , ti

                                           a
            M 236. Demonstrat , i c˘a exist˘ un unic s , ir m˘arginit (a n ) n≥1 astfel ˆıncˆat
                                             1           1         1
                                   c n = 1 +   + . . . +     +         − ln n, n ≥ 1,
                                             2         n − 1    n + a n

            este s , ir constant. Ar˘atat , i c˘a
                                                                  1
                                                      lim a n = − .
                                                     n→∞          6

                                                                                  Cristinel Mortici, Viforˆata

                                                    1       1        1
            M 237. Fie x, y, z > 0 astfel ˆıncˆat       +       +        = 2. Demonstrat , i c˘a
                                                 x + 1    y + 1    z + 1
                                                  1       1      1
                                                √    + √     + √     ≥ 6.
                                                  xy      xz      yz


                                                                                     Mih´aly Bencze, Bras , ov

            M 238. Fie a, b, c s , i d numere reale pozitive astfel ˆıncˆat a − 3 ≥ b ≥ c ≥ d.
                Rezolvat , i ˆın mult , imea numerelor reale ecuat , ia

                                     x
                                                                               x
                                                    x
                                                                    x
                                                         x
                                                                                          x
                                          x
                                               x
                              (a + 9) + b + c + d = a + (b + 3) + (c + 3) + (d + 3) .
                                                                    Marin Chirciu s , i Octavian Stroe, Pites , ti
            M 239. Fie a, b, c s , i d numere reale nenegative astfel ˆıncˆat
                                                          Ä    √ ä
                                       2
                                            2
                                   2
                                                 2
                                 a + b + c + d − 4 ≤ 2 +         3 (a + b + c + d − 4) .
                Ar˘atat , i c˘a
                                            1        1       1        1
                                                +        +       +        ≤ 2.
                                          a + 1    b + 1   c + 1    d + 1
                                                                 Leonard Mihai Giugiuc, Greci – Mehedint , i
   105   106   107   108   109   110   111   112   113   114   115