Page 8 - MATINF Nr. 6
P. 8

8                                                                                E.A. Jos´e Garc´ıa


























                                        Fig. 2: A bicentric quadrilateral ABCD.



            Proof. Since a + c = b + d in a bicentric quadrilateral, the formula (3) reduces to

                                                        α       ad
                                                    cos 2  =         .
                                                        2    ad + bc



                Similarly we can get sin 2 α  =  bc  . Now, following the same steps as in Brahmagupta’s
                                           2    ad+bc
            formula
                                                                      ◦
                                                 ad sin α   bc sin (180 − α)
                                           ∆ 2 =         +
                                                    2               2
                                                 ad sin α   bc sin α
                                              =          +
                                                    2          2
                                                    α     α
                                              = sin   cos (ad + bc)
                                                    2     2
                                                 Ê         Ê
                                                      bc        ad
                                              =                      (ad + bc)
                                                   ad + bc    ad + bc
                                                 √
                                              =    abcd.



                The following theorem generalizes Theorem 1 for a general convex quadrilateral.


            Theorem 5. Let a, b, c, d be the sides of a general convex quadrilateral, s is the semiperimeter,
            and α and γ are opposite angles, then

                                                 α           γ
                                          ad sin 2  + bc cos 2  = (s − a)(s − d)                          (5)
                                                 2           2

            and
                                                γ           α
                                         bc sin 2  + ad cos 2  = (s − b)(s − c).                          (6)
                                                2            2

            Proof. By the Law of Cosines,

                                                                    2
                                                               2
                                         2
                                              2
                                        a + d − 2ad cos α = b + c − 2bc cos γ.
   3   4   5   6   7   8   9   10   11   12   13