Page 25 - MATINF Nr. 11-12
P. 25

Refinements of classical means inequalities                                                     25



            Definition 2. For any strictly positive real numbers a i , i = 1, n, and any p i ∈ [0, 1], i = 1, n,
            such that p 1 + p 2 + . . . + p n = 1, we will denote and define:


                                          Ã
                                                      !              !                     !
                                               n            n                   n
                                              X            X                   X
                           M  p 1 ,p 2 ,...,p n  =  n  p i a i  ·  p i a i+1  · . . . ·  p i a i+n−1  ,   (5)
                              a 1 ,a 2 ,...,a n
                                              i=1          i=1                 i=1
                                                                   1
                                   p 1 ,p 2 ,...,p n
                                M                                                       ,                 (6)
                                   a 1 ,a 2 ,...,a n  =   Å  ã Å    ã       Å         ã
                                                    n         n               n
                                                   P         P               P
                                               n      p i  ·     p i  · . . . ·    p i
                                                      a i       a i+1            a i+n−1
                                                   i=1       i=1             i=1
            where a n+i = a i , for all i = 1, n − 1.
                For the expressions (5) and (6), we will also have the following chain with the classical means
            ([3]).

            Proposition 2 (A refinement of the AM-GM-HM Inequality, n-ary version). For any
            strictly positive real numbers a i , i = 1, n and any p i ∈ [0, 1], i = 1, n, such that p 1 +p 2 +. . .+p n =
            1, the following inequalities hold:

                                  A n [a] ≥ M p 1 ,p 2 ,...,p n  ≥ G n [a] ≥ M p 1 ,p 2 ,...,p n  ≥ H n [a].
                                              a 1 ,a 2 ,...,a n      a 1 ,a 2 ,...,a n
            Proof. For the first inequality, by the GM-AM Inequality we have

                                          Ã
                                                      !              !                     !
                                                n            n                   n
                                              X             X                  X
                            M  p 1 ,p 2 ,...,p n  =  n  p i a i  ·  p i a i+1  · . . . ·  p i a i+n−1
                               a 1 ,p 2 ,...,a n
                                               i=1          i=1                 i=1
                                           n         n                n
                                          P         P                 P
                                             p i a i +  p i a i+1 + . . . +  p i a i+n−1
                                       ≤  i=1       i=1               i=1
                                                             n
                                               n           n                n
                                              P           P                 P
                                          a 1 ·  p i + a 2 ·  p i + . . . + a n ·  p i
                                              i=1         i=1              i=1
                                       =
                                                             n
                                          a 1 + a 2 + . . . + a n
                                       =                     = A n [a],
                                                   n
            with equality when a 1 = a 2 = . . . = a n .
                For the second inequality, by the weighted AM − GM Inequality, applied n times, we have

                                          Ã
                                                      !              !                      !
                                                n            n                   n
                                               X            X                  X
                            M  p 1 ,p 2 ,...,p n  =  n  p i a i  ·  p i a i+1  · . . . ·  p i a i+n−1
                               a 1 ,a 2 ,...,a n
                                               i=1          i=1                 i=1
                                          Ã
                                                     !            !                   !
                                                n          n                 n
                                               Y          Y                 Y
                                       ≥   n      a p i  ·    a p i  · . . . ·  a p i
                                                   i           i+1               i+n−1
                                               i=1        i=1               i=1
                                          »
                                                                              p 1 +p 2 +...+p n
                                       =   n  a p 1 +p 2 +...+p n  · a p 1 +p 2 +...+p n  · . . . · a n
                                                            2
                                              1
                                          √
                                       =   n  a 1 · a 2 · . . . · a n = G n [a],
            with equality when a 1 = a 2 = . . . = a n .
   20   21   22   23   24   25   26   27   28   29   30