Page 20 - MATINF Nr. 8
P. 20

20                                                                                3  SOLUTION



                Therefore, the following inequality holds:


                                 (kx − 1)(ky − 1)(kz − 1)     Å  kt − 1  ã 2
                                                                                2
                                                           ≤              k − kt − 2t .
                                                                 2
                                   (x + y)(y + z)(z + x)        t + 1
                                          î   √ ó
                Consider the function g : 0,   3  → R given by
                                              3
                                                     kt − 1
                                                   Å        ã 2
                                                                      2
                                            g(t) =              k − kt − 2t
                                                      2
                                                     t + 1
            and note that
                                                                           2
                                                      2
                                                   2(k + 1)(kt − 1)(1 − 3t )
                                            ′
                                           g (t) =                           .
                                                             2
                                                            (t + 1) 3
                             √
                Thus, if k ≥   3, then
                                                          ®        Ç√ å´
                                                                       3
                                             max g(t) ∈     g(0), g         ,
                                              h  √ i                  3
                                            t∈ 0,  3
                                                 3
                   √         √
            and if   3  ≤ k ≤  3, then
                    3
                                                     max g(t) = g(0)
                                                     h  √ i
                                                   t∈ 0,  3
                                                        3
                ′
            as g (t) ≤ 0 in this case.
                Consequently,
                                                         √
                                                           3            √
                                                    (k− 3)
                                                            , if k ≥ 3 3
                                                         8
                                      max g(t) =                                    .
                                      h  √ i                                   √
                                    t∈ 0,  3                       √
                                         3                          3
                                                         k,     if     ≤ k ≤ 3 3
                                                                     3
                            √
                So, if k ≥ 3 3, then
                                                                 √ ä
                                                           Ä         3
                                                            k −    3
                                                  sup F =             ,
                                                                8
            which is attained, for example, when triangle ABC is equilateral.
                We also proved that
                                                        F(k) ≤ k
                                     √            √
            holds for all k so that   3  ≤ k ≤ 3 3. Here we can notice that equality is attained for an
                                      3
            isosceles triangle whose angle between the two equal sides, say A, approaches to 0 :


                     lim [(k cos A − sin A) (k cos B − sin B) (k cos C − sin C)] = k · (−1) · (−1) = k.
                    A→0 +


                Therefore, we can conclude that

                                                     √   3            √
                                                 (k− 3)
                                                          , if k ≥ 3 3
                                                      8
                                       sup F =                                   .
                                                                 √           √
                                                
                                                      k,     if     ≤ k ≤ 3 3
                                                                  3
                                                                  3
   15   16   17   18   19   20   21   22   23   24   25