Page 30 - MATINF Nr. 8
P. 30

30                                                                          5  FINAL REMARKS



                As for the lower bound, we have that

                                                                                                    Ä √ ä
                                                         − sin α cos 2  π  + α , if 0 < α < arccot 3 3
                                                                        4
                                                        
            inf [cos (A + α) cos (B + α) cos (C + α)] =
                                                                                            Ä √ ä
                                                                   π                                      π
                                                              cos     + α ,       if
                                                                 3                   arccot 3 3 < α ≤
                                                                    3                                      3
            over all non-obtuse-angled triangles ABC.
                Finally, the following is true over all triangles ABC :

                                                                                   3
                                  inf [cos (A + α) cos (B + α) cos (C + α)] = − cos α.



            References


            [1] L. Giugiuc, C. A. Tr˘anc˘an˘au, A. Pˆırvuceanu, Metode moderne de demonstrare a unor
                inegalit˘at , i in triunghi, Revista de Matematic˘a Marinescu-Ghemeci Octavian (2018), nr. 1,
                41–43.

            [2] C. Mateescu, Useful Identities and Inequalities in Geometry Thread, https://
                artofproblemsolving.com/community/c6h412623p2481722

            [3] C. Mateescu, Useful Identities and Inequalities in Geometry Thread, https://
                artofproblemsolving.com/community/c6h412623p2382562

            [4] D. S. Mitrinovi´c, E. Peˇcari´c, V. Volenec, Recent Advances in Geometric Inequalities, Kluwer
                Academic Publishers, 1989.
   25   26   27   28   29   30   31   32   33   34   35