Page 27 - MATINF Nr. 4
P. 27

Elemente computat , ionale de deduct , ie logic˘a                                              27



               9. ∂T = {n 5 , n 7 , n 10 , n 11 } ; toate vˆarfurile aflate pe frontiera arborelui curent generat au ca
                  etichete secvent , i axiom˘a, deci procesul de reactualizare a arborelui T se ˆıncheie cu decizia
                  Secventul init ,ial S este secvent demonstrabil.

                Concluzii

                Lucrarea prezint˘a pe lˆang˘a elementele de baz˘a ale unui limbaj de calcul cu propozit , ii logice
            cu definirea conectivelor logice s , i a modului de reprezentare s , i o modalitate de determinare a
            demostrabilit˘at , ii unei mult , imi de formule logice pe baza unei alte mult , imi logice prin utilizarea
            regulilor de inferent , ˘a Gentzen. Algoritmul ce stabiles , te deduct , ia logic˘a a unui set de formule
            logice ˆın funct , ie de informat , ii logice cunoscute este bazat pe regulile de inferent , ˘a Gentzen.
            Prin descrierea teoretic˘a a elementelor de logic˘a matematic˘a s , i aplicarea unui rat , ionament
            logic algoritmic cu aplicat , ii uzuale privind demonstrarea logic˘a automat˘a se arat˘a utilitatea s , i
            caracterul aplicativ ˆın diverse domenii ce refer˘a reprezentarea cunos , tint , elor ˆıntr-un limbaj logic.



            Bibliografie


            [1] J.L. Bell, M. Machover, A Course in Mathematical Logic, North-Holland, 1997.

            [2] M. Ben-Ari, Mathematical Logic for Computer Science, Springer Verlag, 2001.

            [3] J. Bessie, S. Glennan, Elements of Deductive Inference: An Introduction to Symbolic Logic,
                 Wadsworth Publishing Company, 1999.

            [4] C.M. Bishop, Neural Network for Pattern Recognition, Clarendon Press, 1995.

            [5] A. Church, Introduction to Mathematical Logic, Princeton University Press, 1996.

            [6] A. Cichocki, R. Unbehauen, Neural Networks for Signal Processing and Optimization, Wiley,
                 1994.

            [7] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, 1991.

            [8] K.I. Diamantaras, S.Y. Kung, Principal Component Neural Networks: Theory and Applica-
                 tions, Wiley, 1996.

            [9] H.D. Ebbinghauss, J. Flum, W. Thomas, Mathematical Logic, Springer Verlag, 1994.

            [10] M. Fitting, First-Order Logic and Automated Theorem Proving, Springer Verlag, 1996.


            [11] T. Foster, Logic, Computation and Set Theory, CRC Press, 2002.

            [12] M. Gabbay, C.J. Hogger, J.A. Robinson, Handbook of Logic in Artificial Intelligence and
                 Logic Programming, Oxford University Press, 1998.


            [13] J.H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem Proving,
                 Harper&Row, 2003.

            [14] W. Gardner, Introduction to Random Processes with Applications to Signal and Systems,
                 Macmillan, 1986.

            [15] R. Gonzalez, P. Wintz, Digital Image Processing, Addison-Wisley, 1987.
   22   23   24   25   26   27   28   29   30   31   32